Search alternatives:
process optimization » model optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
model process » modeling process (Expand Search), model proposes (Expand Search), model proteins (Expand Search)
tiny » ting (Expand Search), tina (Expand Search), tony (Expand Search)
process optimization » model optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
model process » modeling process (Expand Search), model proposes (Expand Search), model proteins (Expand Search)
tiny » ting (Expand Search), tina (Expand Search), tony (Expand Search)
-
1
Differences between models of different scales.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
2
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
-
3
LC-FPN structure.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
4
Labeling information of the VisDrone dataset.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
5
LFERELAN structure.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
6
The experimental environment.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
7
LCFF-Net network structure.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
8
LDSCD-Head structure.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
9
Ablation experiment result on VisDrone-val.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
10
The key parameter configurations.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
11
LR-NET structure.
Published 2024“…To address these issues, we propose an improved, lightweight algorithm: LCFF-Net. First, we propose the LFERELAN module, designed to enhance the extraction of tiny target features and optimize the use of computational resources. …”
-
12
-
13
Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf
Published 2024“…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”