Search alternatives:
policy optimization » topology optimization (Expand Search), wolf optimization (Expand Search), process optimization (Expand Search)
which optimization » weight optimization (Expand Search), whale optimization (Expand Search), though optimization (Expand Search)
binary edge » binary image (Expand Search)
edge policy » sdgs policy (Expand Search), media policy (Expand Search), leave policy (Expand Search)
tiny » ting (Expand Search), tina (Expand Search), tony (Expand Search)
policy optimization » topology optimization (Expand Search), wolf optimization (Expand Search), process optimization (Expand Search)
which optimization » weight optimization (Expand Search), whale optimization (Expand Search), though optimization (Expand Search)
binary edge » binary image (Expand Search)
edge policy » sdgs policy (Expand Search), media policy (Expand Search), leave policy (Expand Search)
tiny » ting (Expand Search), tina (Expand Search), tony (Expand Search)
-
1
-
2
Test results of different models on TinyPerson.
Published 2025“…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
-
3
-
4
Visual comparison of TinyPerson.
Published 2025“…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
-
5
Comparisons of computation rate performance for different offloading algorithms.for N = 10, 20, 30.
Published 2025Subjects: -
6
Comparison of total time consumed for different offloading algorithms.for N = 10, 20, 30.
Published 2025Subjects: -
7
-
8
-
9
-
10
-
11
-
12
The evolution of the Wireless Power Transfer (WPT) time fraction β over simulation frames.
Published 2025Subjects: -
13
-
14
CDF of task latency, approximated as the inverse of the achieved computation rate.
Published 2025Subjects: -
15
-
16
-
17
Test results of different models on VisDrone2019.
Published 2025“…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
-
18
Structure of YOLOv11 network.
Published 2025“…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
-
19
Structure of SEAM network [16].
Published 2025“…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”
-
20
Ablation experiment curve.
Published 2025“…These characteristics impose high demands on detection algorithms in terms of fine-grained feature extraction, cross-scale fusion capability, and occlusion resistance.The YOLOv11s model has significant limitations in practical applications: its feature extraction module has a single semantic representation, the traditional feature pyramid network has limited capability to detect multi-scale targets, and it lacks an effective feature compensation mechanism when targets are occluded.To address these issues, we propose a UAV aerial small target detection algorithm named UAS-YOLO (Universal Inverted Bottleneck with Adaptive BiFPN and Separated and Enhancement Attention module YOLO), which incorporates three key optimizations. …”