Search alternatives:
based decrease » caused decreased (Expand Search), marked decrease (Expand Search), based defense (Expand Search)
a large » _ large (Expand Search)
trait » traits (Expand Search)
based decrease » caused decreased (Expand Search), marked decrease (Expand Search), based defense (Expand Search)
a large » _ large (Expand Search)
trait » traits (Expand Search)
-
41
Table_1_Degree of stemness predicts micro-environmental response and clinical outcomes of diffuse large B-cell lymphoma and identifies a potential targeted therapy.docx
Published 2022“…<p>Some cells within a diffuse large B-cell lymphoma (DLBCL) have the genotype of a stem cell, the proportion of which is termed degree of stemness. …”
-
42
-
43
-
44
-
45
-
46
-
47
-
48
-
49
-
50
-
51
Definitions of traits for association analyses.
Published 2025“…<div><p>Decreased nitric oxide (NO) production from the vascular endothelium is a major factor for vascular aging. …”
-
52
-
53
-
54
-
55
Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation
Published 2020“…Although progress has been made in the construction of stimulus-responsive actuators, the performance of these smart materials is still unsatisfactory, owing to their slow response, small deformation amplitude, uncontrollable bending direction, and unidirectional (2D to 3D) transformation. Herein, we employ a structural bionic strategy to design and fabricate a novel water/moisture responsive nanofibrous actuator with an alignment degree gradient. …”
-
56
Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation
Published 2020“…Although progress has been made in the construction of stimulus-responsive actuators, the performance of these smart materials is still unsatisfactory, owing to their slow response, small deformation amplitude, uncontrollable bending direction, and unidirectional (2D to 3D) transformation. Herein, we employ a structural bionic strategy to design and fabricate a novel water/moisture responsive nanofibrous actuator with an alignment degree gradient. …”
-
57
Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation
Published 2020“…Although progress has been made in the construction of stimulus-responsive actuators, the performance of these smart materials is still unsatisfactory, owing to their slow response, small deformation amplitude, uncontrollable bending direction, and unidirectional (2D to 3D) transformation. Herein, we employ a structural bionic strategy to design and fabricate a novel water/moisture responsive nanofibrous actuator with an alignment degree gradient. …”
-
58
Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation
Published 2020“…Although progress has been made in the construction of stimulus-responsive actuators, the performance of these smart materials is still unsatisfactory, owing to their slow response, small deformation amplitude, uncontrollable bending direction, and unidirectional (2D to 3D) transformation. Herein, we employ a structural bionic strategy to design and fabricate a novel water/moisture responsive nanofibrous actuator with an alignment degree gradient. …”
-
59
Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation
Published 2020“…Although progress has been made in the construction of stimulus-responsive actuators, the performance of these smart materials is still unsatisfactory, owing to their slow response, small deformation amplitude, uncontrollable bending direction, and unidirectional (2D to 3D) transformation. Herein, we employ a structural bionic strategy to design and fabricate a novel water/moisture responsive nanofibrous actuator with an alignment degree gradient. …”
-
60
Nanofibrous Actuator with an Alignment Gradient for Millisecond-Responsive, Multidirectional, Multimodal, and Multidimensional Large Deformation
Published 2020“…Although progress has been made in the construction of stimulus-responsive actuators, the performance of these smart materials is still unsatisfactory, owing to their slow response, small deformation amplitude, uncontrollable bending direction, and unidirectional (2D to 3D) transformation. Herein, we employ a structural bionic strategy to design and fabricate a novel water/moisture responsive nanofibrous actuator with an alignment degree gradient. …”