Search alternatives:
larger decrease » marked decrease (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
a large » _ large (Expand Search)
larger decrease » marked decrease (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
a large » _ large (Expand Search)
-
81
Triple B←N Lewis Pair-Functionalized Triazatruxenes with Large Stokes Shifts
Published 2023“…The introduction of B←N Lewis pairs not only results in a large decrease in the HOMO–LUMO gap but also lowers the LUMO to −3.00 eV. …”
-
82
-
83
-
84
-
85
-
86
-
87
-
88
-
89
-
90
Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks
Published 2022“…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
-
91
Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks
Published 2022“…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
-
92
Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks
Published 2022“…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
-
93
Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks
Published 2022“…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
-
94
Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks
Published 2022“…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
-
95
Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks
Published 2022“…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
-
96
Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks
Published 2022“…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
-
97
-
98
-
99
-
100