Showing 21 - 40 results of 5,166 for search '(( via ((((laser decrease) OR (mean decrease))) OR (larger decrease)) ) OR ( via large increase ))', query time: 0.69s Refine Results
  1. 21

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  2. 22

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  3. 23

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  4. 24

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  5. 25

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  6. 26

    S1 Data - by Naoya Ishibashi (18722999)

    Published 2024
    Subjects:
  7. 27

    Fig 1 - by Naoya Ishibashi (18722999)

    Published 2024
    Subjects:
  8. 28
  9. 29
  10. 30
  11. 31

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  12. 32

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  13. 33

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  14. 34

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  15. 35

    Laser-Enhanced Bubble Detachment Velocity and Heat Dissipation on Abrasive Surfaces by Cong He (5074154)

    Published 2025
    “…It was discovered that the bubble detachment velocity initially increases and subsequently decreases with increasing laser power density, while a reduction in surface roughness can enhance the detachment velocity. …”
  16. 36
  17. 37
  18. 38
  19. 39
  20. 40