Showing 121 - 140 results of 13,060 for search '(( via ((((laser decrease) OR (teer decrease))) OR (larger decrease)) ) OR ( a large decreases ))', query time: 0.41s Refine Results
  1. 121
  2. 122
  3. 123
  4. 124

    Capturing the Transient Microstructure of a Physically Assembled Gel Subjected to Temperature and Large Deformation by Rosa Maria Badani Prado (11501833)

    Published 2021
    “…Here, we report the real-time change in the structure of physically assembled triblock copolymer gels that consist of 10 and 20 wt % of poly­(styrene)–poly­(isoprene)–poly­(styrene) [PS–PI–PS] triblock copolymer in mineral oil (i) during the gelation process with decreasing temperature, (ii) subjected to large oscillatory deformation, and (iii) during the stress-relaxation process after the application of a step strain. …”
  5. 125

    Capturing the Transient Microstructure of a Physically Assembled Gel Subjected to Temperature and Large Deformation by Rosa Maria Badani Prado (11501833)

    Published 2021
    “…Here, we report the real-time change in the structure of physically assembled triblock copolymer gels that consist of 10 and 20 wt % of poly­(styrene)–poly­(isoprene)–poly­(styrene) [PS–PI–PS] triblock copolymer in mineral oil (i) during the gelation process with decreasing temperature, (ii) subjected to large oscillatory deformation, and (iii) during the stress-relaxation process after the application of a step strain. …”
  6. 126
  7. 127
  8. 128
  9. 129
  10. 130
  11. 131
  12. 132
  13. 133
  14. 134

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  15. 135

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  16. 136

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  17. 137

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  18. 138

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  19. 139

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  20. 140

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”