Showing 61 - 80 results of 1,473 for search '(( via ((((laser decrease) OR (teer decrease))) OR (larger decrease)) ) OR ( via large decreases ))', query time: 1.79s Refine Results
  1. 61

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  2. 62

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  3. 63

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  4. 64
  5. 65
  6. 66

    Norm ISWSVR: A Data Integration and Normalization Approach for Large-Scale Metabolomics by Xian Ding (421647)

    Published 2022
    “…More importantly, Norm ISWSVR also allows a low frequency of QCs, which could significantly decrease the burden of a large-scale experiment. Correspondingly, Norm ISWSVR favorably improves the data quality of large-scale metabolomics data.…”
  7. 67
  8. 68

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  9. 69

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  10. 70

    Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  11. 71

    Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  12. 72

    Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  13. 73

    Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  14. 74
  15. 75
  16. 76
  17. 77
  18. 78
  19. 79
  20. 80