Showing 341 - 360 results of 34,994 for search '(( via ((((linear decrease) OR (a decrease))) OR (larger decrease)) ) OR ( a large decrease ))', query time: 0.97s Refine Results
  1. 341

    Image_2_ADAMDEC1 accelerates GBM progression via activation of the MMP2-related pathway.jpg by Huimin Qi (5277911)

    Published 2022
    “…<p>The ADAM (a disintegrin and metalloprotease) gene-related family including ADAM, ADAMTS, and ADAM-like decysin-1 has been reported to play an important role in the pathogenesis of multiple diseases, including cancers (lung cancer, gliomas, colorectal cancer, and gastrointestinal cancer). …”
  2. 342

    Image_1_ADAMDEC1 accelerates GBM progression via activation of the MMP2-related pathway.tif by Huimin Qi (5277911)

    Published 2022
    “…<p>The ADAM (a disintegrin and metalloprotease) gene-related family including ADAM, ADAMTS, and ADAM-like decysin-1 has been reported to play an important role in the pathogenesis of multiple diseases, including cancers (lung cancer, gliomas, colorectal cancer, and gastrointestinal cancer). …”
  3. 343

    Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket by Lilia Leisle (11356934)

    Published 2021
    “…Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. …”
  4. 344

    Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket by Lilia Leisle (11356934)

    Published 2021
    “…Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. …”
  5. 345
  6. 346
  7. 347

    Symmetric Diblock Copolymers in Cylindrical Confinement: A Way to Chiral Morphologies? by Ludwig Schneider (9542546)

    Published 2020
    “…Again, this order progresses from the cylinder surface inward, generating a chiral morphology. Because the spacing between the internal AB interfaces decreases upon approaching the helix center, the concomitant stress results in a decrease in the number of lamellae and the formation of unique dislocation defects. …”
  8. 348

    Symmetric Diblock Copolymers in Cylindrical Confinement: A Way to Chiral Morphologies? by Ludwig Schneider (9542546)

    Published 2020
    “…Again, this order progresses from the cylinder surface inward, generating a chiral morphology. Because the spacing between the internal AB interfaces decreases upon approaching the helix center, the concomitant stress results in a decrease in the number of lamellae and the formation of unique dislocation defects. …”
  9. 349

    Symmetric Diblock Copolymers in Cylindrical Confinement: A Way to Chiral Morphologies? by Ludwig Schneider (9542546)

    Published 2020
    “…Again, this order progresses from the cylinder surface inward, generating a chiral morphology. Because the spacing between the internal AB interfaces decreases upon approaching the helix center, the concomitant stress results in a decrease in the number of lamellae and the formation of unique dislocation defects. …”
  10. 350

    Symmetric Diblock Copolymers in Cylindrical Confinement: A Way to Chiral Morphologies? by Ludwig Schneider (9542546)

    Published 2020
    “…Again, this order progresses from the cylinder surface inward, generating a chiral morphology. Because the spacing between the internal AB interfaces decreases upon approaching the helix center, the concomitant stress results in a decrease in the number of lamellae and the formation of unique dislocation defects. …”
  11. 351

    Symmetric Diblock Copolymers in Cylindrical Confinement: A Way to Chiral Morphologies? by Ludwig Schneider (9542546)

    Published 2020
    “…Again, this order progresses from the cylinder surface inward, generating a chiral morphology. Because the spacing between the internal AB interfaces decreases upon approaching the helix center, the concomitant stress results in a decrease in the number of lamellae and the formation of unique dislocation defects. …”
  12. 352

    Symmetric Diblock Copolymers in Cylindrical Confinement: A Way to Chiral Morphologies? by Ludwig Schneider (9542546)

    Published 2020
    “…Again, this order progresses from the cylinder surface inward, generating a chiral morphology. Because the spacing between the internal AB interfaces decreases upon approaching the helix center, the concomitant stress results in a decrease in the number of lamellae and the formation of unique dislocation defects. …”
  13. 353
  14. 354
  15. 355

    Mechanism study on a plague outbreak driven by the construction of a large reservoir in southwest china (surveillance from 2000-2015) by Xin Wang (91924)

    Published 2017
    “…</p><p>Methodology/Principal findings</p><p>We studied a plague outbreak caused by the construction of a large reservoir in southwest China followed 16-years’ surveillance.…”
  16. 356

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  17. 357

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  18. 358

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  19. 359

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  20. 360

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”