Search alternatives:
larger decrease » marked decrease (Expand Search)
large increase » large increases (Expand Search), marked increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
via large » a large (Expand Search)
larger decrease » marked decrease (Expand Search)
large increase » large increases (Expand Search), marked increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
via large » a large (Expand Search)
-
101
-
102
-
103
-
104
-
105
-
106
-
107
-
108
-
109
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
110
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
111
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
112
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
113
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
114
Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…The treatment also reduced the key tight junction protein, occludin, at the cell membrane, and increased acidic mucins and extracellular alkaline phosphatase activity. Additionally, GDC decreased cAMP, suggesting its mechanism of action was via activation of a G-protein coupled receptor. …”
-
115
Sevoflurane induces cognitive impairment in young mice via autophagy
Published 2019“…We used different groups of mice for behavioral testing via the Morris Water Maze from P31 to P37.</p><p>Results</p><p>The anesthetic sevoflurane increased the level of LC3-II and ratio of LC3-II/LC3-I, decreased the p62 level in the hippocampus of the young mice, and induced cognitive impairment in the mice. 3-Methyladenine, the inhibitor of autophagy, attenuated the activation of autophagy and ameliorated the cognitive impairment induced by sevoflurane in the young mice.…”
-
116
-
117
-
118
Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket
Published 2021“…Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. …”
-
119
Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket
Published 2021“…Prolonged acidosis, as it occurs during ischemic stroke, induces neuronal death via acid-sensing ion channel 1a (ASIC1a). Concomitantly, it desensitizes ASIC1a, highlighting the pathophysiological significance of modulators of ASIC1a acid sensitivity. …”
-
120