Search alternatives:
larger decrease » marked decrease (Expand Search)
teer decrease » greater decrease (Expand Search)
mean decrease » a decrease (Expand Search)
via large » a large (Expand Search)
increases » increased (Expand Search), increase (Expand Search)
Showing 1 - 20 results of 5,049 for search '(( via ((((teer decrease) OR (mean decrease))) OR (larger decrease)) ) OR ( via large increases ))', query time: 0.97s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  12. 12

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  13. 13

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  14. 14

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  15. 15

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  16. 16

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  17. 17

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. …”
  18. 18
  19. 19
  20. 20