Showing 8,761 - 8,780 results of 27,058 for search '(( via ((a decrease) OR (linear decrease)) ) OR ( a ((largest decrease) OR (larger decrease)) ))', query time: 0.82s Refine Results
  1. 8761

    Repeated evolution of uniparental reproduction in <i>Sellaphora</i> (Bacillariophyceae) by Aloisie Poulíčková (155432)

    Published 2015
    “…<div><p>Diatoms possess a remarkable life cycle in which cell size decreases slowly during vegetative cell division and then increases rapidly via special expanding cells called ‘auxospores’, which are usually formed as a result of biparental sexual reproduction. …”
  2. 8762

    Image4_Dipyridamole activates adenosine A2B receptor and AMPK/cAMP signaling and promotes myogenic differentiation of myoblastic C2C12 cells.tif by Miguel Marco-Bonilla (16970271)

    Published 2023
    “…Extra-/intracellular nucleotides were examined via HPLC. The expression of muscle differentiation proteins (Pax7, Mif5, MyoD, MyoG, and MHC), PKA/CREB, adenosine receptors (A1, A2A, A2B, and A3), ATP-channel pannexin-1 and the P2X7 receptor was analyzed via WB and RT-PCR. cAMP and AMPK activation was measured.…”
  3. 8763

    Image3_Dipyridamole activates adenosine A2B receptor and AMPK/cAMP signaling and promotes myogenic differentiation of myoblastic C2C12 cells.tif by Miguel Marco-Bonilla (16970271)

    Published 2023
    “…Extra-/intracellular nucleotides were examined via HPLC. The expression of muscle differentiation proteins (Pax7, Mif5, MyoD, MyoG, and MHC), PKA/CREB, adenosine receptors (A1, A2A, A2B, and A3), ATP-channel pannexin-1 and the P2X7 receptor was analyzed via WB and RT-PCR. cAMP and AMPK activation was measured.…”
  4. 8764

    Image2_Dipyridamole activates adenosine A2B receptor and AMPK/cAMP signaling and promotes myogenic differentiation of myoblastic C2C12 cells.tif by Miguel Marco-Bonilla (16970271)

    Published 2023
    “…Extra-/intracellular nucleotides were examined via HPLC. The expression of muscle differentiation proteins (Pax7, Mif5, MyoD, MyoG, and MHC), PKA/CREB, adenosine receptors (A1, A2A, A2B, and A3), ATP-channel pannexin-1 and the P2X7 receptor was analyzed via WB and RT-PCR. cAMP and AMPK activation was measured.…”
  5. 8765

    Image1_Dipyridamole activates adenosine A2B receptor and AMPK/cAMP signaling and promotes myogenic differentiation of myoblastic C2C12 cells.tif by Miguel Marco-Bonilla (16970271)

    Published 2023
    “…Extra-/intracellular nucleotides were examined via HPLC. The expression of muscle differentiation proteins (Pax7, Mif5, MyoD, MyoG, and MHC), PKA/CREB, adenosine receptors (A1, A2A, A2B, and A3), ATP-channel pannexin-1 and the P2X7 receptor was analyzed via WB and RT-PCR. cAMP and AMPK activation was measured.…”
  6. 8766

    Image5_Dipyridamole activates adenosine A2B receptor and AMPK/cAMP signaling and promotes myogenic differentiation of myoblastic C2C12 cells.tif by Miguel Marco-Bonilla (16970271)

    Published 2023
    “…Extra-/intracellular nucleotides were examined via HPLC. The expression of muscle differentiation proteins (Pax7, Mif5, MyoD, MyoG, and MHC), PKA/CREB, adenosine receptors (A1, A2A, A2B, and A3), ATP-channel pannexin-1 and the P2X7 receptor was analyzed via WB and RT-PCR. cAMP and AMPK activation was measured.…”
  7. 8767

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  8. 8768

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  9. 8769

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  10. 8770

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  11. 8771

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  12. 8772

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  13. 8773

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  14. 8774

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  15. 8775

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  16. 8776

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  17. 8777

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  18. 8778

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  19. 8779

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”
  20. 8780

    Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing by Dhanushkodi D. Mariappan (6792080)

    Published 2019
    “…From the final contact area, the volume of ink transfer is mediated by rupture of a capillary bridge; and, after rupture, liquid spreads to fill the area defined by a precursor film matching the stamp geometry with high precision. …”