Showing 8,041 - 8,060 results of 26,486 for search '(( via ((a decrease) OR (we decrease)) ) OR ( i ((largest decrease) OR (larger decrease)) ))', query time: 1.06s Refine Results
  1. 8041

    Image 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.tif by Fan Lin (625737)

    Published 2025
    “…</p>Conclusion<p>Polygonatum sibiricum polysaccharides protects pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative stress and apoptosis via AMPK-SIRT1 pathway activation. Network pharmacology and molecular docking further highlight PSP’s potential as a multi-target therapeutic agent for diabetes.…”
  2. 8042

    Table 3_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Conclusion<p>Polygonatum sibiricum polysaccharides protects pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative stress and apoptosis via AMPK-SIRT1 pathway activation. Network pharmacology and molecular docking further highlight PSP’s potential as a multi-target therapeutic agent for diabetes.…”
  3. 8043

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Conclusion<p>Polygonatum sibiricum polysaccharides protects pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative stress and apoptosis via AMPK-SIRT1 pathway activation. Network pharmacology and molecular docking further highlight PSP’s potential as a multi-target therapeutic agent for diabetes.…”
  4. 8044

    Table 1_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Conclusion<p>Polygonatum sibiricum polysaccharides protects pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative stress and apoptosis via AMPK-SIRT1 pathway activation. Network pharmacology and molecular docking further highlight PSP’s potential as a multi-target therapeutic agent for diabetes.…”
  5. 8045

    Table_1_Detection of Breeding-Relevant Fruit Cracking and Fruit Firmness Quantitative Trait Loci in Sweet Cherry via Pedigree-Based and Genome-Wide Association Approaches.XLSX by William Wesley Crump (12177104)

    Published 2022
    “…Phenotypic data, in conjunction with genome-wide genotypic data from the RosBREED cherry 6K SNP array, were used in the QTL analysis performed via Pedigree-Based Analysis using the FlexQTL™ software, supplemented by a Genome-Wide Association Study using the BLINK software. …”
  6. 8046

    Image_3_Detection of Breeding-Relevant Fruit Cracking and Fruit Firmness Quantitative Trait Loci in Sweet Cherry via Pedigree-Based and Genome-Wide Association Approaches.JPEG by William Wesley Crump (12177104)

    Published 2022
    “…Phenotypic data, in conjunction with genome-wide genotypic data from the RosBREED cherry 6K SNP array, were used in the QTL analysis performed via Pedigree-Based Analysis using the FlexQTL™ software, supplemented by a Genome-Wide Association Study using the BLINK software. …”
  7. 8047

    Table 2_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Conclusion<p>Polygonatum sibiricum polysaccharides protects pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative stress and apoptosis via AMPK-SIRT1 pathway activation. Network pharmacology and molecular docking further highlight PSP’s potential as a multi-target therapeutic agent for diabetes.…”
  8. 8048

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Conclusion<p>Polygonatum sibiricum polysaccharides protects pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative stress and apoptosis via AMPK-SIRT1 pathway activation. Network pharmacology and molecular docking further highlight PSP’s potential as a multi-target therapeutic agent for diabetes.…”
  9. 8049

    Table 4_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Conclusion<p>Polygonatum sibiricum polysaccharides protects pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative stress and apoptosis via AMPK-SIRT1 pathway activation. Network pharmacology and molecular docking further highlight PSP’s potential as a multi-target therapeutic agent for diabetes.…”
  10. 8050

    Table 5_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Conclusion<p>Polygonatum sibiricum polysaccharides protects pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative stress and apoptosis via AMPK-SIRT1 pathway activation. Network pharmacology and molecular docking further highlight PSP’s potential as a multi-target therapeutic agent for diabetes.…”
  11. 8051

    Image_2_Detection of Breeding-Relevant Fruit Cracking and Fruit Firmness Quantitative Trait Loci in Sweet Cherry via Pedigree-Based and Genome-Wide Association Approaches.JPEG by William Wesley Crump (12177104)

    Published 2022
    “…Phenotypic data, in conjunction with genome-wide genotypic data from the RosBREED cherry 6K SNP array, were used in the QTL analysis performed via Pedigree-Based Analysis using the FlexQTL™ software, supplemented by a Genome-Wide Association Study using the BLINK software. …”
  12. 8052

    Table 6_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Conclusion<p>Polygonatum sibiricum polysaccharides protects pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative stress and apoptosis via AMPK-SIRT1 pathway activation. Network pharmacology and molecular docking further highlight PSP’s potential as a multi-target therapeutic agent for diabetes.…”
  13. 8053

    Image_1_Detection of Breeding-Relevant Fruit Cracking and Fruit Firmness Quantitative Trait Loci in Sweet Cherry via Pedigree-Based and Genome-Wide Association Approaches.JPEG by William Wesley Crump (12177104)

    Published 2022
    “…Phenotypic data, in conjunction with genome-wide genotypic data from the RosBREED cherry 6K SNP array, were used in the QTL analysis performed via Pedigree-Based Analysis using the FlexQTL™ software, supplemented by a Genome-Wide Association Study using the BLINK software. …”
  14. 8054

    Table 7_Polygonatum sibiricum polysaccharides enhance pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative damage via the AMPK-SIRT1 pathway.xlsx by Fan Lin (625737)

    Published 2025
    “…</p>Conclusion<p>Polygonatum sibiricum polysaccharides protects pancreatic β-cell function in diabetic zebrafish by mitigating mitochondrial oxidative stress and apoptosis via AMPK-SIRT1 pathway activation. Network pharmacology and molecular docking further highlight PSP’s potential as a multi-target therapeutic agent for diabetes.…”
  15. 8055

    Table 1_Saikosaponin A induces cellular senescence in triple-negative breast cancer by inhibiting the PI3K/Akt signalling pathway.docx by Yingchao Wu (2870927)

    Published 2025
    “…Existing therapeutic agents are generally accompanied by significant side effects. Here, we highlight Saikosaponin A (SSA), a promising natural metabolite characterized by low toxicity, demonstrating significant efficacy against breast cancer through the induction of cellular senescence.…”
  16. 8056

    Image_2_Suppression of Endoplasmic Reticulum Stress by 4-PBA Protects Against Hyperoxia-Induced Acute Lung Injury via Up-Regulating Claudin-4 Expression.tif by Hsin-Ping Pao (8545680)

    Published 2021
    “…<p>Endoplasmic reticulum (ER) stress that disrupts ER function can occur in response to a wide variety of cellular stress factors leads to the accumulation of unfolded and misfolded proteins in the ER. …”
  17. 8057

    Image_1_Suppression of Endoplasmic Reticulum Stress by 4-PBA Protects Against Hyperoxia-Induced Acute Lung Injury via Up-Regulating Claudin-4 Expression.tif by Hsin-Ping Pao (8545680)

    Published 2021
    “…<p>Endoplasmic reticulum (ER) stress that disrupts ER function can occur in response to a wide variety of cellular stress factors leads to the accumulation of unfolded and misfolded proteins in the ER. …”
  18. 8058

    Image_3_Suppression of Endoplasmic Reticulum Stress by 4-PBA Protects Against Hyperoxia-Induced Acute Lung Injury via Up-Regulating Claudin-4 Expression.tif by Hsin-Ping Pao (8545680)

    Published 2021
    “…<p>Endoplasmic reticulum (ER) stress that disrupts ER function can occur in response to a wide variety of cellular stress factors leads to the accumulation of unfolded and misfolded proteins in the ER. …”
  19. 8059
  20. 8060