Showing 81 - 100 results of 905 for search '(( via ((laser decrease) OR (linear decrease)) ) OR ( a latest decrease ))', query time: 0.95s Refine Results
  1. 81

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  2. 82

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  3. 83

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  4. 84

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  5. 85

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  6. 86

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  7. 87

    Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No... by Mengqing Yang (13253917)

    Published 2025
    “…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
  8. 88
  9. 89
  10. 90
  11. 91
  12. 92

    datasheet2_Pretreatment of Huoxue Jiedu Formula Ameliorates Myocardial Ischaemia/Reperfusion Injury by Decreasing Autophagy via Activation of the PI3K/AKT/mTOR Pathway.xlsx by Linzi Long (10198631)

    Published 2021
    “…<p>Background: Myocardial ischaemia/reperfusion (I/R) results in myocardial injury via excessive autophagy. Huoxue Jiedu Formula (HJF) has been widely applied in China for the treatment of ischaemic heart disease. …”
  13. 93

    datasheet1_Pretreatment of Huoxue Jiedu Formula Ameliorates Myocardial Ischaemia/Reperfusion Injury by Decreasing Autophagy via Activation of the PI3K/AKT/mTOR Pathway.xlsx by Linzi Long (10198631)

    Published 2021
    “…<p>Background: Myocardial ischaemia/reperfusion (I/R) results in myocardial injury via excessive autophagy. Huoxue Jiedu Formula (HJF) has been widely applied in China for the treatment of ischaemic heart disease. …”
  14. 94

    datasheet3_Pretreatment of Huoxue Jiedu Formula Ameliorates Myocardial Ischaemia/Reperfusion Injury by Decreasing Autophagy via Activation of the PI3K/AKT/mTOR Pathway.xlsx by Linzi Long (10198631)

    Published 2021
    “…<p>Background: Myocardial ischaemia/reperfusion (I/R) results in myocardial injury via excessive autophagy. Huoxue Jiedu Formula (HJF) has been widely applied in China for the treatment of ischaemic heart disease. …”
  15. 95
  16. 96
  17. 97

    Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy by Yanchao Zhao (5129174)

    Published 2025
    “…Furthermore, iontronic porous foams are introduced to endow sensing pixels with high linearity (<i>R</i><sup>2</sup> = 0.985) and sensitivity (2.812 kPa<sup>–1</sup>). …”
  18. 98

    Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy by Yanchao Zhao (5129174)

    Published 2025
    “…Furthermore, iontronic porous foams are introduced to endow sensing pixels with high linearity (<i>R</i><sup>2</sup> = 0.985) and sensitivity (2.812 kPa<sup>–1</sup>). …”
  19. 99
  20. 100