Search alternatives:
largest decrease » largest decreases (Expand Search), marked decrease (Expand Search)
linear decrease » linear increase (Expand Search)
larger decrease » marked decrease (Expand Search)
mean decrease » a decrease (Expand Search)
Showing 801 - 820 results of 11,025 for search '(( via ((mean decrease) OR (linear decrease)) ) OR ( a ((largest decrease) OR (larger decrease)) ))', query time: 0.67s Refine Results
  1. 801

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  2. 802

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  3. 803

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  4. 804

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  5. 805

    Active Diffusion of Self-Propelled Particles in Flexible Polymer Networks by Yeongjin Kim (10878837)

    Published 2022
    “…However, when the particle size is increased to be comparable to the mesh size, the active particles explore the polymer network via the trapping-and-hopping mechanism. If the particle is larger than the mesh, it captures the collective viscoelastic dynamics from the polymer network at short times and the simple diffusion of the total system at large times. …”
  6. 806
  7. 807

    Figure highlights deleterious effects of ceiling effects on commonly used effect size <i>d<sub>p</sub></i> using both Henry et al. [14] data set and much larger data set included i... by Bob Uttl (53434)

    Published 2013
    “…Panel A highlights that the size of age declines measured by effect size index <i>d<sub>p</sub></i> decreases as performance of older adults increases, as the test becomes easier and data are more afflicted by ceiling effects. …”
  8. 808
  9. 809
  10. 810
  11. 811
  12. 812
  13. 813
  14. 814
  15. 815
  16. 816
  17. 817
  18. 818
  19. 819
  20. 820