Search alternatives:
greatest decrease » greater decrease (Expand Search), treatment decreased (Expand Search), greater increase (Expand Search)
linear decrease » linear increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
a greatest » a greater (Expand Search)
greatest decrease » greater decrease (Expand Search), treatment decreased (Expand Search), greater increase (Expand Search)
linear decrease » linear increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
a greatest » a greater (Expand Search)
-
61
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
62
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
63
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
64
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
65
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…Capillary coating plays a crucial role in the separation efficiency and reproducibility of capillary zone electrophoresis (CZE). In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
66
-
67
-
68
-
69
-
70
-
71
-
72
Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy
Published 2025“…Furthermore, iontronic porous foams are introduced to endow sensing pixels with high linearity (<i>R</i><sup>2</sup> = 0.985) and sensitivity (2.812 kPa<sup>–1</sup>). …”
-
73
Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy
Published 2025“…Furthermore, iontronic porous foams are introduced to endow sensing pixels with high linearity (<i>R</i><sup>2</sup> = 0.985) and sensitivity (2.812 kPa<sup>–1</sup>). …”
-
74
-
75
-
76
-
77
-
78
-
79
-
80