Showing 1 - 20 results of 45,429 for search '(( via large decrease ) OR ((( _ content increased ) OR ( ((c large) OR (_ large)) decrease ))))', query time: 1.01s Refine Results
  1. 1

    Supplementary data: In vitro amplification of whole large plasmids via transposon-mediated oriC insertion by Masayuki Su'estugu (11359558)

    Published 2021
    “…</b> The indicated amount of pRpoABCDZ was subjected into the Tn-oriC insertion reaction, followed by RCR at 30˚C for 16 h. …”
  2. 2
  3. 3
  4. 4
  5. 5

    Fig 3 - by Calvin P. Philp (12095878)

    Published 2022
    Subjects:
  6. 6
  7. 7

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  8. 8

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  9. 9

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  10. 10

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  11. 11

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  12. 12

    Large and Tunable Wavelength Blue Shifts in Luminescent Piezochromism of Cu(I) Complexes via a Guest Encapsulation Strategy by Wan-Tao Chen (330486)

    Published 2024
    “…In this work, a series of Cu­(I) complexes that display blue-shifted and enhanced luminescence under pressure are designed via a guest encapsulation strategy. Detailed study reveals that, after grinding, the stacking mode of Cu­(I) complexes cracks and the encapsulated guests release rapidly, along with the decrease in the surrounding polarity of emitters and the corresponding luminescence change. …”
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20