Showing 1 - 20 results of 30,382 for search '(( via large decrease ) OR ((( a ((nn decrease) OR (_ decrease)) ) OR ( _ web decrease ))))', query time: 0.63s Refine Results
  1. 1
  2. 2

    Presentation 1_Prehospital tranexamic acid decreases early mortality in trauma patients: a systematic review and meta-analysis.pdf by Yi Li (1144)

    Published 2025
    “…</p>Conclusion<p>Prehospital TXA decreases early (24-h) mortality in trauma patients without a significant increase in the risk of VTE and other complications, and further studies are still needed to improve and optimize its management strategy.…”
  3. 3

    Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses by Jing Wang (6206297)

    Published 2025
    “…However, how global land use changes impact soil N supply and potential N loss remains elusive. By compiling a global data set of 1,782 paired observations from 185 publications, we show that land use conversion from natural to managed ecosystems significantly reduced NNM by 7.5% (−11.5, −2.8%) and increased NN by 150% (86, 194%), indicating decreasing N availability while increasing potential N loss through denitrification and nitrate leaching. …”
  4. 4

    Data Sheet 1_Prehospital tranexamic acid decreases early mortality in trauma patients: a systematic review and meta-analysis.docx by Yi Li (1144)

    Published 2025
    “…</p>Conclusion<p>Prehospital TXA decreases early (24-h) mortality in trauma patients without a significant increase in the risk of VTE and other complications, and further studies are still needed to improve and optimize its management strategy.…”
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  11. 11

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  12. 12

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  13. 13

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  14. 14

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  15. 15

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Furthermore, at 1100 °C, thermal conductivity decreased by 34.4%, and the density was only 242 kg/m<sup>3</sup>, the lowest density among SiO<sub>2</sub>-based aerogel composites. …”
  16. 16
  17. 17
  18. 18

    Fig 1 - by Samuel Hylander (331771)

    Published 2024
    Subjects:
  19. 19

    Fig 5 - by Samuel Hylander (331771)

    Published 2024
    Subjects:
  20. 20

    Fig 4 - by Samuel Hylander (331771)

    Published 2024
    Subjects: