Showing 1 - 20 results of 53,172 for search '(( via large decrease ) OR ((( a large increases ) OR ( via ((a decrease) OR (teer decrease)) ))))', query time: 0.77s Refine Results
  1. 1
  2. 2

    Norm ISWSVR: A Data Integration and Normalization Approach for Large-Scale Metabolomics by Xian Ding (421647)

    Published 2022
    “…More importantly, Norm ISWSVR also allows a low frequency of QCs, which could significantly decrease the burden of a large-scale experiment. …”
  3. 3
  4. 4

    Deletion of murine <i>Rhoh</i> leads to de-repression of <i>Bcl-6</i> via decreased KAISO levels and accelerates a malignancy phenotype in a murine model of lymphoma by Hiroto Horiguchi (3215001)

    Published 2022
    “…RHOH was initially identified as a translocation partner with BCL-6 in non-Hodgkin lymphoma (NHL), and aberrant somatic hypermutation (SHM) in the 5ʹ untranslated region of the RHOH gene has also been detected in Diffuse Large B-Cell Lymphoma (DLBCL). …”
  5. 5
  6. 6

    CY-09 Alleviates the Depression-like Behaviors via Inhibiting NLRP3 Inflammasome-Mediated Neuroinflammation in Lipopolysaccharide-Induced Mice by Yu Wang (12152)

    Published 2022
    “…Depression is a serious mental illness, mainly characterized as large mood swings and sleep, diet, and cognitive function disorders. …”
  7. 7
  8. 8

    DataSheet3_Coprophagy Prevention Decreases the Reproductive Performance and Granulosa Cell Apoptosis via Regulation of CTSB Gene in Rabbits.docx by Guohua Song (5152595)

    Published 2022
    “…Overexpression of CTSB increased secretion of progesterone and estradiol, partly via upregulation of CYP19A1 while inhibition of CTSB decreased progesterone secretion partly via downregulation of the StAR gene. …”
  9. 9

    DataSheet2_Coprophagy Prevention Decreases the Reproductive Performance and Granulosa Cell Apoptosis via Regulation of CTSB Gene in Rabbits.ZIP by Guohua Song (5152595)

    Published 2022
    “…Overexpression of CTSB increased secretion of progesterone and estradiol, partly via upregulation of CYP19A1 while inhibition of CTSB decreased progesterone secretion partly via downregulation of the StAR gene. …”
  10. 10

    DataSheet1_Coprophagy Prevention Decreases the Reproductive Performance and Granulosa Cell Apoptosis via Regulation of CTSB Gene in Rabbits.ZIP by Guohua Song (5152595)

    Published 2022
    “…Overexpression of CTSB increased secretion of progesterone and estradiol, partly via upregulation of CYP19A1 while inhibition of CTSB decreased progesterone secretion partly via downregulation of the StAR gene. …”
  11. 11

    Species richness (<i>SR</i>, upper panels) and Shannon’s entropy (<i>SE</i>, lower panels) vs. the rate in which new species are trying to invade the community, <i>νN</i>. by Immanuel Meyer (12306666)

    Published 2022
    “…When the number of temporal niches is large, as in the <i>Q</i> = 30 case in panels (c) and (f), an increase of <i>νN</i> leads to an increase in the number of species, their different response buffers the effect of environmental variations and the results converge to the predictions of the neutral model (cyan dashed line). …”
  12. 12

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  13. 13

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  14. 14

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  15. 15

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  16. 16

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  17. 17

    High-Temperature Resistance, Lightweight, and Thermally Insulating Silica Aerogel via Doping Hollow Silica Nanoparticles by Mingyang Yang (1405321)

    Published 2025
    “…Traditional solutions to this issue, such as doping with opacifiers or fibers, often increase thermal conductivity and density. To increase the thermal stability of standard aerogels comprising small full-density SiO<sub>2</sub> nanoparticles (SFPs) (typically 2–15 nm in diameter), SiO<sub>2</sub> aerogels were doped with large hollow SiO<sub>2</sub> nanoparticles (LHPs) with diameters of 100–250 nm. …”
  18. 18

    MAP-map analysis of activity decreases within olfactory bulb and preoptic dopaminergic regions. by Jessica C. Nelson (10906236)

    Published 2023
    “…<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1010650#pgen.1010650.g007" target="_blank">Fig 7</a> shows increased activity in olfactory bulb dopaminergic neurons in <i>ap2s1</i> and <i>pappaa</i> mutants and preoptic dopaminergic neurons in <i>pappaa</i> mutants. …”
  19. 19
  20. 20