Search alternatives:
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
a large » _ large (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
a large » _ large (Expand Search)
-
101
Adaptive Design and Analysis Via Partitioning Trees for Emulation of a Complex Computer Code
Published 2022“…<p>Computer models are used as replacements for physical experiments in a large variety of applications. Nevertheless, direct use of the computer model for the ultimate scientific objective is often limited by the complexity and cost of the model. …”
-
102
DataSheet3_Coprophagy Prevention Decreases the Reproductive Performance and Granulosa Cell Apoptosis via Regulation of CTSB Gene in Rabbits.docx
Published 2022“…Overexpression of CTSB increased secretion of progesterone and estradiol, partly via upregulation of CYP19A1 while inhibition of CTSB decreased progesterone secretion partly via downregulation of the StAR gene. …”
-
103
DataSheet2_Coprophagy Prevention Decreases the Reproductive Performance and Granulosa Cell Apoptosis via Regulation of CTSB Gene in Rabbits.ZIP
Published 2022“…Overexpression of CTSB increased secretion of progesterone and estradiol, partly via upregulation of CYP19A1 while inhibition of CTSB decreased progesterone secretion partly via downregulation of the StAR gene. …”
-
104
DataSheet1_Coprophagy Prevention Decreases the Reproductive Performance and Granulosa Cell Apoptosis via Regulation of CTSB Gene in Rabbits.ZIP
Published 2022“…Overexpression of CTSB increased secretion of progesterone and estradiol, partly via upregulation of CYP19A1 while inhibition of CTSB decreased progesterone secretion partly via downregulation of the StAR gene. …”
-
105
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
106
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
107
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
108
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
109
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
110
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
111
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
112
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
113
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
114
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
115
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
116
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
117
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
118
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
119
Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits
Published 2023“…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
-
120