Showing 101 - 120 results of 39,988 for search '(( via large increases ) OR ((( ha ((step decrease) OR (we decrease)) ) OR ( a large increases ))))', query time: 0.94s Refine Results
  1. 101

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  2. 102

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  3. 103

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  4. 104

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  5. 105

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  6. 106

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  7. 107

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  8. 108

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  9. 109

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  10. 110

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  11. 111

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  12. 112

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  13. 113

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  14. 114

    Increased Crystal Field Drives Intermediate Coupling and Minimizes Decoherence in Tetravalent Praseodymium Qubits by Arun Ramanathan (9992643)

    Published 2023
    “…Herein, the magnitude of the CF is increased via control of the RE oxidation state. The enhanced 4f metal–ligand covalency in Pr<sup>4+</sup> gives rise to CF energy scales that compete with the spin–orbit coupling of Pr<sup>4+</sup> and thereby shifts the paradigm from the ionic ζ<sub>SOC</sub> ≫ <i>V</i><sub>CF</sub> limit, used to describe trivalent RE-ion, to an intermediate coupling (IC) regime. …”
  15. 115
  16. 116
  17. 117
  18. 118
  19. 119
  20. 120