Search alternatives:
linear decrease » linear increase (Expand Search)
peer decrease » teer decrease (Expand Search), mean decrease (Expand Search), step decrease (Expand Search)
stem decrease » step decrease (Expand Search), sizes decrease (Expand Search), teer decrease (Expand Search)
via linear » a linear (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
_ stem » _ system (Expand Search)
linear decrease » linear increase (Expand Search)
peer decrease » teer decrease (Expand Search), mean decrease (Expand Search), step decrease (Expand Search)
stem decrease » step decrease (Expand Search), sizes decrease (Expand Search), teer decrease (Expand Search)
via linear » a linear (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
_ stem » _ system (Expand Search)
-
1
Continuous Viscoelasticity Measurement of Cell Spheroids via Microfluidic Electrical Aspiration
Published 2024Subjects: -
2
Data Sheet 1_Elevated relative humidity significantly decreases cannabinoid concentrations while delaying flowering development in Cannabis sativa L..docx
Published 2025“…Furthermore, high RH significantly suppressed cannabinoid accumulation: cannabidiolic acid (CBD-A), cannabidiol (CBD), and cannabichromenic acid (CBC-A) levels decreased by approximately 4.9-fold, 3.2-fold, and 13-fold, respectively. …”
-
3
-
4
The results of linear mixed model.
Published 2024“…The tDCS group demonstrated a significant decrease in AMT of MF and TrA/IO muscles (P < 0.05) and an increase in N80 amplitude (P = 0.027), with no significant changes in the control group. …”
-
5
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
6
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
7
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
8
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
9
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
10
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
11
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
12
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
13
Biocompatible and Antifouling Linear Poly(<i>N</i>‑(2-hydroxypropyl)methacrylamide)-Coated Capillaries via Aqueous RAFT Polymerization Method for Clinical Proteomics Analysis of No...
Published 2025“…In this study, a linear poly(<i>N</i>-(2-hydroxypropyl)methacrylamide) (LP(HPMA))-coated capillary was prepared by using the surface-confined aqueous reversible addition–fragmentation chain transfer polymerization method. …”
-
14
-
15
-
16
Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy
Published 2025“…However, skin-attachable sensor arrays still suffer from strain interference and signal crosstalk under stretching or bending, particularly on curved or deformable surfaces. Here, we present a stretchable tactile array that is both strain-insensitive and crosstalk-suppressed, achieved via a hierarchically segmented design that mitigates lateral and vertical deformations synergistically. …”
-
17
Strain-Insensitive, Crosstalk-Suppressed, Ultrawide-Linearity Iontronic Tactile Skin from a Synergistic Segment-Embedded Strategy
Published 2025“…However, skin-attachable sensor arrays still suffer from strain interference and signal crosstalk under stretching or bending, particularly on curved or deformable surfaces. Here, we present a stretchable tactile array that is both strain-insensitive and crosstalk-suppressed, achieved via a hierarchically segmented design that mitigates lateral and vertical deformations synergistically. …”
-
18
A proposed model for how loss of Ldh and Gpdh1 activity nonautonomously restricts larval growth.
Published 2025Subjects: -
19
-
20