-
41
-
42
-
43
6. Motif Code Theory
منشور في 2025"…<p dir="ltr">The Motif Code Theory (MCT) simulation code, mct_unified_code.py, is a Python 3.9 script that models the universe as a time-dependent directed multigraph G(t) = (V(t), E(t)) with N=10^7 vertices (representing quantum fields/particles) and edges (interactions). …"
-
44
-
45
-
46
BGC-Prophet
منشور في 2025"…/output/ --name split --threads 10</code></pre><p dir="ltr"><b>4. Gene Prediction</b></p><p dir="ltr">Detect BGC genes using a trained model:</p><pre><code>bgc_prophet predict --datasetPath .…"
-
47
-
48
-
49
Computing speed and memory usage.
منشور في 2025"…<b>(b)</b> Physical memory consumption depending on simulated plane in radial and depth direction. Color coding same as in (a). Memory consumption was recorded as the maximum resident size during simulation monitored with the Python built-in module resource. …"
-
50
The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network"
منشور في 2024"…The lane extraction result is saved in `result/predicted_lane.csv`.</p><p dir="ltr"></p><h2>Requirements</h2><p dir="ltr">The codes use the following dependencies with Python 3.11</p><ul><li>networkx==3.2.1</li><li>pytorch==2.0.1</li><li>torch-geometric==2.5.3</li><li>geopandas==1.0.1</li></ul><p dir="ltr"><br></p>…"
-
51
-
52
<b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b>
منشور في 2025"…<p dir="ltr"><b>Use case codes of the DDS3 and DDS4 datasets for bacillus segmentation and tuberculosis diagnosis, respectively</b></p><p dir="ltr">The code was developed in the Google Collaboratory environment, using Python version 3.7.13, with TensorFlow 2.8.2. …"
-
53
<b>Historical Nifty 50 Constituent Weights (Rolling 20-Year Window)</b>
منشور في 2025"…</li><li>Values: The cells contain the stock's weight (as a percentage) in the Nifty 50 index on a given date. A value of 0 indicates the stock was not an index constituent at that time.…"
-
54
Data and some code used in the paper:<b>Expansion quantization network: A micro-emotion detection and annotation framework</b>
منشور في 2025"…Attached is the micro-emotion annotation code based on pytorch, which can be used to annotate the Goemotions dataset by yourself, or predict the emotion classification based on the annotation results. …"
-
55
-
56
Oka et al., Supplementary Data for "Development of a battery emulator using deep learning model to predict the charge–discharge voltage profile of lithium-ion batteries"
منشور في 2024"…For a single file, test data is read, and the prediction plot is output. To use this Python script, you need to modify the "CFG (config)" and "Convenient" sections within the script.…"
-
57
-
58
Data and Code for 'A Comparative Study of Physics-Informed and Data-Driven Neural Networks for Compound Flood Simulation at River-Ocean Interfaces: A Case Study of Hurricane Irene'
منشور في 2025"…<br><br>conda create --name tf2 --file requirement_tf2.txt<br>conda activate tf2<br><br><br>### Before training<br>Before running the code, need to create folders to save the model output<br><br>For CNN, create /files/CNN<br><br>For PINNs, create /saved_model<br><br>For saving figures from visualization, create /figures<br><br></p><p dir="ltr">Training and Results</p><p dir="ltr"><br>PINNs<br>Training: To train the model, run:</p><p dir="ltr">python PINN_test_bnd_uh_Telemac.py</p><p dir="ltr">python PINN_test_bnd_uh_Telemac_FDM.py<br></p><p dir="ltr">Result Plotting and Comparison: For plotting and comparing results, use:</p><p dir="ltr">python PINN_plot_comparison.py<br><br><br>Data-driven Model<br>CNN Training: To train the CNN model, execute:</p><p dir="ltr">python train_CNN.py<br><br>Result Visualization: To visualize the results of the CNN model, run:</p><p dir="ltr">python predict_CNN.py<br><br>To reproduce all results and figures in the manuscript, please refer to the scripts in analysis/</p>…"
-
59
Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i>
منشور في 2025"…The repository contains all necessary data and code for reproducing the analyses of beetle breeding phenology predictions using circadian activity patterns.…"
-
60