Search alternatives:
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
-
101
-
102
-
103
Code and data for reproducing the results in the original paper of DML-Geo
Published 2025“…<p dir="ltr">This asset provides all the code and data for reproducing the results (figures and statistics) in the original paper of DML-Geo</p><h2>Main Files:</h2><p dir="ltr"><b>main.ipynb</b>: the main notebook to generate all the figures and data presented in the paper</p><p dir="ltr"><b>data_generator.py</b>: used for generating synthetic datasets to validate the performance of different models</p><p dir="ltr"><b>dml_models.py</b>: Contains implementations of different Double Machine Learning variants used in this study.…”
-
104
Efficient, Hierarchical, and Object-Oriented Electronic Structure Interfaces for Direct Nonadiabatic Dynamics Simulations
Published 2025“…We present a novel, flexible framework for electronic structure interfaces designed for nonadiabatic dynamics simulations, implemented in Python 3 using concepts of object-oriented programming. …”
-
105
-
106
Reproducible Code and Data for figures
Published 2025“…</i></p><p dir="ltr">It contains:</p><p dir="ltr">✅ <b>Python Code</b> – Scripts used for data preprocessing, and visualization.…”
-
107
software code of NeoDesign
Published 2024“…<h2>Implementation and Dependencies</h2><p dir="ltr">neoDesign was developed with python (recommend>3.9) and shell (bash) language. …”
-
108
Simulation Code and Raw Data
Published 2025“…<p dir="ltr">Reproducible code (Python) implementing a symmetrized split-step Fourier method (SSFM), with configuration files for all scans. …”
-
109
DA-Faster-RCNN code
Published 2025“…The implementation is written in Python using PyTorch and Detectron2.…”
-
110
-
111
RealBench: A Repo-Level Code Generation Benchmark Aligned with Real-World Software Development Practices
Published 2025“…<br>│ │ └── uml_dag.py # UML dependency graph analysis.<br>│ ├── model_gen/ # Code generation using various LLMs.<br>│ │ ├── generate/ # LLM inference implementations.…”
-
112
The codes and data for "Lane Extraction from Trajectories at Road Intersections Based on Graph Transformer Network"
Published 2024“…</p><h3><b>Model training</b></h3><h4><code>python train_GTN.py</code></h4><p dir="ltr">This step trains the GTN model. …”
-
113
<b>Code and derived data for</b><b>Training Sample Location Matters: Accuracy Impacts in LULC Classification</b>
Published 2025“…</li><li>Python/Kaggle notebooks (<code>.ipynb</code>): reproducibility pipeline for accuracy metrics and statistical analysis.…”
-
114
A game of life with dormancy - Code
Published 2024“…</p><ul><li>To run an animated simulation, use `python simulation.py'.</li><li>The implementation of Spore Life can be found in gol.py.…”
-
115
Simple implementation examples of agent AI on free energy calculation and phase-field simulation
Published 2025“…</p> <p>Using Gibbs energy calculations and diffusion simulations as examples, we demonstrated the implementation method and usefulness of simple agent AI, where sample python codes are distributed as supplemental materials.…”
-
116
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…</li><li>The <b>CIPrediction</b> folder contains model training code.</li><li>The <b>ParallelComputation</b> folder contains geographic computation code.…”
-
117
The codes and data for "A Graph Convolutional Neural Network-based Method for Predicting Computational Intensity of Geocomputation"
Published 2025“…</li><li>The <b>CIPrediction</b> folder contains model training code.</li><li>The <b>ParallelComputation</b> folder contains geographic computation code.…”
-
118
Data and code for: Automatic fish scale analysis
Published 2025“…</p><h3>Includeed in this repository:</h3><ul><li><b>Raw data files:</b></li><li><code>comparison_all_scales.csv</code> – comparison_all_scales.csv - manually verified vs. automated measurements of 1095 coregonid scales</li></ul><ul><li><ul><li><code>Validation_data.csv</code> – manually measured scale data under binocular</li><li><code>Parameter_correction_numeric.csv</code> – calibration data (scale radius vs. fish length/weight)</li></ul></li><li><b>Statistical results:</b></li><li><ul><li><code>comparison_stats_core_variables.csv</code> – verification statistics (bias, relative error, limits of agreement)</li><li><code>Validation_statistics.csv</code> – summary statistics and model fits (manual vs. automated)</li></ul></li><li><b>Executable script (not GUI):</b></li><li><ul><li><code>Algorithm.py</code> – core processing module for scale feature extraction<br>→ <i>Note: The complete Coregon Analyzer application (incl. …”
-
119
Testing Code for JcvPCA and JsvCRP.
Published 2025“…<p>This file contains the code that implements both metrics in python and apply them on a simulated dataset.…”
-
120