Search alternatives:
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
-
101
Dataset for CNN-based Bayesian Calibration of TELEMAC-2D Hydraulic Model
Published 2025“…</li></ul></li></ul><p dir="ltr">The <code>.npy</code> files were loaded and processed using the following approach in Python:</p><p dir="ltr"># Load the input and output numpy arrays</p><p dir="ltr">input_path = "..…”
-
102
Dataset for the Modeling and Bibliometric Analysis of E-business in Entrepreneurship (1997–2024)
Published 2025“…These include a summary of Main Information (PNG), a graph of the Annual Scientific Production (PNG), a Thematic Map (PNG) illustrating core research themes, and an analysis of Trend Topics (PNG). For the modeling component, a predictive analysis was conducted using Python to forecast future publication volumes. …”
-
103
-
104
LGF v7HELLAS: A Dynamical Model of Ethical Convergence and Lambda-Zero Transition
Published 2025“…<h2><b>Description</b></h2><p dir="ltr"><b>LGF v7.Hellas</b> represents the final, validated form of the <i>Language Gravitational Field (LGF)</i> model, completing the transition from early unstable versions (v5.2) to the fully stable, reproducible, scientifically grounded system (v5.3 → v7.0 → v7.Hellas).…”
-
105
-
106
Exploring post-wildfire hydrologic response in central Colorado using field observations and the Landlab modeling framework
Published 2024“…Landlab, an open-source, componentized model written in Python, can be used to explore landscape evolution across both short and long time scales. …”
-
107
Oka et al., Supplementary Data for "Development of a battery emulator using deep learning model to predict the charge–discharge voltage profile of lithium-ion batteries"
Published 2024“…(<b>DOI:</b> 10.1038/s41598-024-80371-9 )<br><br>A zip file contains following data and codes.</p><p dir="ltr"><br></p><p dir="ltr">01_lstm_model_making.py</p><p dir="ltr">This file is a Python script for reading battery charge-discharge data and training an LSTM model. …”
-
108
Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx
Published 2025“…The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
-
109
PepENS
Published 2025“…It represents a pioneering, consensus-based method by combining embeddings from ProtT5-XL-UniRef50 with Position Specific Scoring Matrices and Half-Sphere Exposure features to train an ensemble model consisting of EfficientNetB0 via image output from DeepInsight technology, CatBoost, and Logistic Regression. …”
-
110
MCCN Case Study 3 - Select optimal survey locality
Published 2025“…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…”
-
111
<b>Altered cognitive processes shape tactile perception in autism.</b> (data)
Published 2025“…The perceptual decision-making setup was controlled by Bpod (Sanworks) through scripts in Python (PyBpod, https://pybpod.readthedocs.io/en/latest/). …”
-
112
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
Published 2025“…</p><p dir="ltr">The Python programming source code used to run the calculation of ET0 and AI is provided and available online on Figshare at:</p><p dir="ltr">https://figshare.com/articles/software/Global_Aridity_Index_and_Potential_Evapotranspiration_Climate_Database_v3_-_Algorithm_Code_Python_/20005589</p><p dir="ltr">Peer-Review Reference and Proper Citation:</p><p dir="ltr">Zomer, R.J.; Xu, J.; Trabuco, A. 2022. …”
-
113
Global Research Dataset on Social Media in Entrepreneurial Startup (2009–2024)
Published 2025“…Analytical outputs are organized into multiple formats: CSV files for raw bibliometric data; PNG images for thematic maps, trend topic visualizations, and research flowcharts; and CSV and PNG outputs for annual publication trajectories and polynomial regression-based modeling projections. Visualization and analysis were conducted using Microsoft Excel for summary statistics, R Biblioshiny for thematic and trend mapping, and Python for projection modeling.…”
-
114
Data Sheet 1_Establishing a real-time biomarker-to-LLM interface: a modular pipeline for HRV signal acquisition, processing, and physiological state interpretation via generative A...
Published 2025“…</p>Discussion<p>This system represents an early prototype of bioadaptive AI, in which physiological signals are incorporated as part of the model's input context.…”
-
115
Performance Benchmark: SBMLNetwork vs. SBMLDiagrams Auto-layout.
Published 2025“…<p>Log–log plot of median wall-clock time for SBMLNetwork’s C++-based auto-layout engine (blue circles, solid fit) and SBMLDiagrams’ implementation of the pure-Python NetworkX spring_layout algorithm (red squares, dashed fit), applied to synthetic SBML models containing 20–2,000 species, with a fixed 4:1 species-to-reaction ratio. …”
-
116
MYCroplanters can quantify the interaction between pathogenic and non-pathogenic bacteria and their effects on plant health.
Published 2025“…(e) Figure showing data from (d) converted into binary health/disease scores. Each dot represents a single plant. Black lines with ribbons are Bayesian model predictions with 95% prediction intervals, respectively. …”
-
117
GridScopeRodents: High-Resolution Global Typical Rodents Distribution Projections from 2021 to 2100 under Diverse SSP-RCP Scenarios
Published 2025“…Here, <i>Genus</i> represents the rodent genus, <i>GCM</i> denotes the global climate model used, <i>Year</i> specifies the projected time period, <i>SSP-RCP</i> indicates the shared socioeconomic pathway and representative concentration pathway, and <i>Statistics</i> describes the file’s data characteristics. …”
-
118
-
119
Overview of generalized weighted averages.
Published 2025“…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…”
-
120
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
Published 2025“…In total, 75 % of the labelled observations were assigned to train and 25 % to test the model. To evaluate the model performance, the root mean squared root error (RMSE, the standard deviation of the residuals that represents the mean difference between the prediction and the real value for the test set) and <i>R</i><sup>2</sup> were used, which was calculated using r2_score() from <i>Scikit-learn</i> metrics. …”