Search alternatives:
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
python model » python tool (Expand Search), action model (Expand Search), motion model (Expand Search)
-
121
-
122
Overview of deep learning terminology.
Published 2024“…This paper introduces the geodl R package, which supports pixel-level classification applied to a wide range of geospatial or Earth science data that can be represented as multidimensional arrays where each channel or band holds a predictor variable. geodl is built on the torch package, which supports the implementation of DL using the R and C++ languages without the need for installing a Python/PyTorch environment. …”
-
123
Moulin distributions during 2016-2021 on the southwest Greenland Ice Sheet
Published 2025“…</p><p><br></p><ul><li>00_Satellite-derived moulins: Moulins directly mapped from Sentinel-2 imagery, representing actual moulin positions;</li><li>01_Snapped moulins: Moulins snapped to DEM-modeled supraglacial drainage networks, primarily used for analyses;</li><li>02_Moulin recurrences: Recurring moulins determined from the snapped moulins;</li><li>03_Internally drained catchments: Internally drained catchment (IDC) associated with each moulin;</li><li>04_Surface meltwater runoff: surface meltwater runoff calculated from MAR for the study area, elevation bins, and IDCs; </li><li>05_DEM-derived: Topographic features modeled from ArcticDEM, including elevation bins, depressions and drainage networks;</li><li>06_GWR: Variables for conducting geographically weighted regression (GWR) analysis;</li></ul><p><br></p><ul><li>Code_01_Mapping moulins on the southwestern GrIS.ipynb: A Jupyter Notebook to analyze moulin distributions, reproducing most of the analyses and figures presented in the manuscript using the provided datasets;</li><li>Code_02_pre1_calculate Strain Rate from XY ice velocity.py: A preprocessing Python script to calculate strain rate for the GWR analysis;</li><li>Code_02_pre2_calculate Driving Stress from ice thickness and surface slope.py: A preprocessing Python script to calculate driving stress for the GWR analysis;</li><li>Code_02_GWR analysis.ipynb: A Jupyter Notebook to conduct the GWR analysis using the provided datasets.…”
-
124
<b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b>
Published 2025“…</p><p dir="ltr"><b>Input:</b></p><ul><li><code>svi_module/svi_data/svi_info.csv</code> - Image metadata from Step 1</li><li><code>perception_module/trained_models/</code> - Pre-trained models</li></ul><p dir="ltr"><b>Command:</b></p><pre><pre>python -m perception_module.pred \<br> --model-weights .…”
-
125
Missing and Unaccounted-for People in Mexico (1960s–2025)
Published 2025“…</li><li><b>Requirements File:</b> A <code>requirements.txt</code> file listing the necessary Python libraries to run the script seamlessly.…”
-
126
Supplementary material for "Euler inversion: Locating sources of potential-field data through inversion of Euler's homogeneity equation"
Published 2025“…</p><h2>License</h2><p dir="ltr">All Python source code (including <code>.py</code> and <code>.ipynb</code> files) is made available under the MIT license. …”
-
127
Audio Datasets of belt conveyor rollers in mines
Published 2024“…</li><li><b>Python Code: </b>This code validates the accuracy and usability of the audio feature datasets in real-time monitoring of belt conveyor roller operational states.…”
-
128
Improving the calibration of an integrated CA-What If? digital planning framework
Published 2025“…</p><p dir="ltr">This dataset includes (1) all required data for reproducing the materials within the manuscript, (2) detailed Python codes of the proposed CA-What If? model, and (3) a step-by-step instruction document.…”
-
129
Attention and Cognitive Workload
Published 2025“…</p><p dir="ltr">The data for subject 2 do not include the 2nd part of the acquisition (python task) because the equipment stopped acquiring; subject 3 has the 1st (N-Back task and mental subtraction) and the 2nd part (python tutorial) together in the <code>First part</code> folder (file <code>D1_S3_PB_description.json</code> indicates the start and end of each task); subject 4 only has the mental subtraction task in the 1st part acquisition and in subject 8, the subtraction task data is included in the 2nd part acquisition, along with python task.…”
-
130
Social media images of China's terraces
Published 2025“…</p><p dir="ltr">These images can be used for training classification models. All code used for model training and testing is available at: https://github.com/chen7092/Deep-learning-for-cultural-ecosystem-services-of-terraces.…”
-
131
Bacterial persistence modulates the speed, magnitude and onset of antibiotic resistance evolution
Published 2025“…</p><p dir="ltr">Repository structure</p><p dir="ltr">Fig_1/</p><ul><li>Probability of emergence analysis</li><li>Fig_1.py: contour plot generation</li></ul><p dir="ltr">Fig_2/</p><ul><li>MIC evolution simulations</li><li>Fig_2_a/: R-based simulation analysis</li><li>Fig_2_b/: Python visualization</li><li>Fig_2_c/: speed of resistance evolution analysis</li><li>Fig_2_d/: time to resistance analysis</li></ul><p dir="ltr">Fig_3/</p><ul><li>Distribution analysis</li><li>Fig_3_a-b.R: density plots and bar charts (empirical and simulated)</li></ul><p dir="ltr">Fig_4/</p><ul><li>Mutation analysis</li><li>Fig_4_a-b/: mutation counting analysis</li><li><ul><li>Fig_4_a/: simulation data (sim)</li><li>Fig_4_b/: empirical data (emp)</li></ul></li><li>Fig_4_c/: gene ontology and functional analysis</li></ul><p dir="ltr">Fig_5/</p><ul><li>Large-scale evolutionary simulations</li><li>Fig_5_a-b/: heatmap visualizations</li><li>Fig_5_c/: MIC and extinction analysis (empirical)</li></ul><p dir="ltr">Fig_6/</p><ul><li>Population size effects</li><li>Fig_6.py: population size analysis simulations</li></ul><p dir="ltr">S1_figure/</p><ul><li>Supplementary experimental data</li></ul><p dir="ltr">S2_figure/</p><ul><li>Supplementary frequency analysis</li></ul><p dir="ltr">S3_figure/</p><ul><li>Supplementary probability analysis</li></ul><p dir="ltr">scripts_simulations_cluster/</p><ul><li>Large-scale, cluster-optimized simulations</li></ul><p dir="ltr">complete_data/</p><ul><li>Reference to the full data sheet (full data set deposited elsewhere)</li></ul><p dir="ltr">Script types and languages</p><p dir="ltr">Python scripts (.py)</p><ul><li>Mathematical modeling: survival functions, probability calculations</li><li>Stochastic simulations: tau-leaping population dynamics</li><li>Data processing: mutation analysis, frequency calculations</li><li>Visualization: plotting with matplotlib and seaborn</li><li>Typical dependencies: numpy, pandas, matplotlib, seaborn, scipy</li></ul><p dir="ltr">R scripts (.R)</p><ul><li>Statistical analysis: distribution fitting, density plots</li><li>Advanced visualization: publication-quality figures (ggplot2)</li><li>Data manipulation: dplyr / tidyr workflows</li><li>Typical dependencies: dplyr, tidyr, ggplot2, readxl, cowplot</li></ul><p dir="ltr">Data requirements</p><p dir="ltr">The scripts are designed to run using the complete_data.xlsx file and, where relevant, the raw simulation outputs and empirical data sets as described above. …”
-
132
Satellite monitoring of Greenland wintertime buried lake drainage
Published 2025“…Buried_lake_drainage_code</p><p dir="ltr">This folder contains two Python Jupyter Notebooks for detecting wintertime buried lake drainages (BLDs). …”
-
133
2024 HUD Point in Time Count Data by State and CoC with Serious Mental Illness and Chronic Substance Use Counts
Published 2025“…</p><p dir="ltr">HUD PIT Count reports for states, Washington, DC, and the 384 CoCs were systematically downloaded from the HUD Exchange website using a Python script developed using Cursor software. Cursor uses large language models, especially Claude Sonnet 4 (Anthropic), to generate code. …”
-
134
Digital Twin for Chemical Sciences
Published 2025“…The procedure for generating data in Figure 3 can be found in the demo notebook in Supplementary Code. The procedure for generating data of Figure 4 has been uploaded in fig4_figshare.zip file. …”
-
135
Sonification of Warming Stripes
Published 2025“…The sonification was produced using the STRAUSS sonification Python package.</p><p dir="ltr">Here we release:<br>1. …”
-
136
(A) Sampling locations and ranges of <i>I. feisthamelii</i> (purple) and <i>I. podalirius</i> (teal) butterflies.
Published 2025“…(B) Sampling locations of butterflies from the <i>Iphiclides</i> HZ. The dashed line represents the approximate HZ center, based on samples collected by Lafranchis et al. …”
-
137
Sonification of Growing Black Hole
Published 2024“…We used the open source Python package STRAUSS to produce the sonification (Trayford and Harrison 2023). …”
-
138
Tracking when the number of individuals in the video frame changes.
Published 2025“…The removal of unnecessary keypoint data is achieved through a Python code that allows specified ranges of tracking data obtained from DeepLabCut to be rewritten as NaN (no data) (<a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003002#pbio.3003002.s019" target="_blank">S1 Protocol</a> and <a href="http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.3003002#pbio.3003002.s010" target="_blank">S10C Fig</a>). …”
-
139
Cognitive Fatigue
Published 2025“…<br></p><p dir="ltr"><b>HCI features</b> encompass keyboard, mouse, and screenshot data. Below is a Python code snippet for extracting screenshot files from the screenshots CSV file.…”
-
140
Physiotherapist-Assisted Wrist Movement Protocol for EEG-Based Corticokinematic Coherence Assessment
Published 2025“…</li></ol><h4><b>Movement File Structure</b></h4><p dir="ltr">Each entry contains:</p><ul><li><code><strong>time</strong></code>: a 32-bit unsigned integer indicating the timestamp in milliseconds,</li><li><code><strong>x</strong></code>, <code><strong>y</strong></code>, <code><strong>z</strong></code>: 16-bit signed integers representing acceleration along the respective axes,</li><li><code><strong>trigger</strong></code>: an 8-bit unsigned integer used to mark event-related triggers for synchronization with the EEG data (e.g., movement onset).…”