-
261
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
منشور في 2025"…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …"
-
262
Spatiotemporal Soil Erosion Dataset for the Yarlung Tsangpo River Basin (1990–2100)
منشور في 2025"…</p><p dir="ltr"><b>Future C factors</b> To ensure the accuracy of the C factor predictions, we selected five CMIP6 climate models (table S4) with high spatial resolution compared to other CMIP6 climate models. …"
-
263
-
264
Global Research Dataset on Social Media in Entrepreneurial Startup (2009–2024)
منشور في 2025"…Analytical outputs are organized into multiple formats: CSV files for raw bibliometric data; PNG images for thematic maps, trend topic visualizations, and research flowcharts; and CSV and PNG outputs for annual publication trajectories and polynomial regression-based modeling projections. Visualization and analysis were conducted using Microsoft Excel for summary statistics, R Biblioshiny for thematic and trend mapping, and Python for projection modeling.…"
-
265
Missing Value Imputation in Relational Data Using Variational Inference
منشور في 2025"…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …"
-
266
PepENS
منشور في 2025"…To the best of our knowledge, this is the first time representations learnt using attention mechanism in transformers are transformed into images to utilize the potential of Convolutional Neural Networks in protein-peptide prediction. The spatial relationships formed between the features by DeepInsight to produce images and the feature extraction from those images by the Convolutional Neural Network play a key role in the performance of the ensemble model. …"
-
267
Collaborative Research: Framework: Improving the Understanding and Representation of Atmospheric Gravity Waves using High-Resolution Observations and Machine Learning
منشور في 2025"…Establishing a framework for implementing and testing ML-based parameterizations in atmospheric models. Focusing first on idealized atmospheric modeling systems, we will tackle challenges associated with coupling interactively an ML-based data-driven scheme and a climate model (e.g., numerical instabilities, linking Python and Fortran). …"
-
268
Harmonic Shell Structures in MaDCoWS2 Clusters: Empirical Validation of Oscillatory Field Genesis (OFG)
منشور في 2025"…Analyzing 22,971 galaxy clusters from MaDCoWS2 DR2, we demonstrate: - **Harmonic shell spacings** (λ = 2π/|∇Φ·∇Θ|) in high-z clusters (z ≥ 1.5) - **Phase-locked redshift distributions** via Lomb-Scargle periodograms - **Predictive templates** for LSST void lensing (Δκ ≥ 0.5) and SPHEREx spectral harmonics Includes: - Cluster spacing histograms (`Cluster_Spacing_Histogram.csv`) - Redshift-phase coherence data (`theta_oscillation_peaks.csv`) - High-z cluster catalog (`High-Redshift_Cluster_z.csv`) - Full analysis code (Python/Jupyter) </p><p><br></p><p><br></p><p dir="ltr">Related Publications**: - Gonzalez et al. (2024) MaDCoWS2 DR2 Catalog (ApJ, 967, 123) - OFG Theoretical Framework (J.D.S. 2025, DeepSeek-verified) - **Tools Required**: Python 3.10+, NumPy, Pandas, Astropy - **Experiment Type**: Observational/Cosmological Simulation </p>…"
-
269
Summary of Tourism Dataset.
منشور في 2025"…The research applies a variational recurrent neural network for enhancing tourism demands and model the complex temporal dependencies within tourism data. …"
-
270
Segment-wise Spending Analysis.
منشور في 2025"…The research applies a variational recurrent neural network for enhancing tourism demands and model the complex temporal dependencies within tourism data. …"
-
271
Hyperparameter Parameter Setting.
منشور في 2025"…The research applies a variational recurrent neural network for enhancing tourism demands and model the complex temporal dependencies within tourism data. …"
-
272
Marketing Campaign Analysis.
منشور في 2025"…The research applies a variational recurrent neural network for enhancing tourism demands and model the complex temporal dependencies within tourism data. …"
-
273
Visitor Segmentation Validation Accuracy.
منشور في 2025"…The research applies a variational recurrent neural network for enhancing tourism demands and model the complex temporal dependencies within tourism data. …"
-
274
Integration of VAE and RNN Architecture.
منشور في 2025"…The research applies a variational recurrent neural network for enhancing tourism demands and model the complex temporal dependencies within tourism data. …"
-
275
CK4Gen, High Utility Synthetic Survival Datasets
منشور في 2024"…</p><p dir="ltr">[2]: Davidson-Pilon “lifelines: Survival Analysis in Python”, <i>Journal of Open Source Software</i>, 2019.…"
-
276
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
منشور في 2025"…We considered a model successful if it is unbiased (predicted vs real values are distributed across the 1:1 diagonal) with the smallest RMSE. …"
-
277
MYCroplanters can quantify the interaction between pathogenic and non-pathogenic bacteria and their effects on plant health.
منشور في 2025"…Black lines with ribbons are Bayesian model predictions with 95% prediction intervals, respectively. …"
-
278
The data of the paper "Remote spectral detection of canopy functional strategies varying within and across forest types".
منشور في 2025"…Canopy_2024_PLSR_ST_canopy_run_refit.py</p><p dir="ltr">This is the python code used for PLSR modeling.</p><p dir="ltr"><br></p><p dir="ltr">3. python_code_get_model_details.zip</p><p dir="ltr">This is the python code to get model performance, coefficients, VIPs, and so on.…"
-
279
Albumin Degradome Foundation Atlas
منشور في 2025"…</p><h2><b>Data Format and Access</b></h2><ul><li><b>Primary file:</b> <code>Albumin_Degradome_Foundation_Atlas_v1.tar.xz</code><br>(contains all peptide tables in standard CSV format)</li><li><b>File Type:</b> ASCII comma-separated values (CSV)</li><li><b>Compression:</b> <code>xz -9 -T0</code> for maximal CPU-parallelised compression</li><li><b>Compatibility:</b></li><li><ul><li>R, Python, MATLAB, SAS</li><li>Excel, LibreOffice</li><li>Any proteomics workflow (e.g., Skyline, MaxQuant preprocessing, MS/MS spectral libraries)</li></ul></li></ul><h2><b>FAIR Principles</b></h2><p dir="ltr">This dataset is fully aligned with FAIR data standards:</p><ul><li><b>Findable:</b> Rich metadata, stable DOI, search-optimised description</li><li><b>Accessible:</b> Open-access Figshare repository</li><li><b>Interoperable:</b> Standard numeric and CSV formats</li><li><b>Reusable:</b> Transparent, reproducible Python source code included</li></ul><h2><b>Applications</b></h2><p dir="ltr">The Albumin Degradome Foundation Atlas supports research across multiple biomedical domains:</p><ul><li>Biomarker development in liver disease, kidney dysfunction, inflammation, and systemic disorders</li><li>Mass-spectrometry method development</li><li>Computational proteomics and peptide modelling</li><li>Autoimmunity and neo-epitope analysis</li><li>Protein–peptide interaction studies</li><li>Proteolytic pathway mapping and degradomics</li></ul><h2><b>Versioning and Future Work</b></h2><p dir="ltr">This is <b>Version 1</b> of the Albumin Degradome Foundation Atlas. …"
-
280
SI files for "Addressing Hemolysis-Induced Loss of Sensitivity in Lateral Flow Assays of Blood Samples with Platinum-Coated Gold Nanoparticles and Machine Learning"
منشور في 2024"…</p><p dir="ltr">2) Model_testing.ipynb: Jupyter Notebook containing Python code for generate predictions for the 112 test strips</p><p dir="ltr">3) Best_model.keras: The final optimized machine learning model saved in Keras format.…"