يعرض 321 - 333 نتائج من 333 نتيجة بحث عن '((python models) OR (python code)) predicted', وقت الاستعلام: 0.24s تنقيح النتائج
  1. 321

    Geometric Mechanics and Stokes’ Theorem in Robotic Locomotion حسب Umar Tabbsum (22058780)

    منشور في 2025
    "…<p dir="ltr">This research develops a rigorous mathematical framework for analyzing and predicting robotic locomotion using the principles of geometric mechanics. …"
  2. 322

    Mushroom Classification Using Support Vector Machines (SVM) Focusing on Cap Features. حسب Gabriel Minato (22462099)

    منشور في 2025
    "…Methods: This is a</p><p dir="ltr">quantitative predictive modeling study, conducted through a computational experiment. …"
  3. 323

    AGU24 - EP11D-1300 - Revisiting Megacusp Embayment Occurrence in Monterey Bay and Beyond: High Spatiotemporal Resolution Satellite Imagery Provides New Insight into the Wave Condit... حسب Kelby Kramer (20706767)

    منشور في 2025
    "…D., Vos, K., & Splinter, K. D. (2022). A Python toolkit to monitor sandy shoreline change using high-resolution PlanetScope cubesats. …"
  4. 324

    Supplementary file 1_Sociodemographic predictors and usability perceptions explaining academic use intention of ChatGPT among university students in Ecuador.pdf حسب Edgar Rolando Morales Caluña (22085753)

    منشور في 2025
    "…Descriptive statistics, exploratory factor analysis, binary logistic regression, and k-means clustering were performed using Python in Google Colab.</p>Results<p>The logistic regression model revealed that perceived usefulness (OR = 2.37) and compatibility with learning style (OR = 1.87) were the most significant predictors of high academic use intention. …"
  5. 325

    Machine Learning-Driven Discovery and Database of Cyanobacteria Bioactive Compounds: A Resource for Therapeutics and Bioremediation حسب Renato Soares (20348202)

    منشور في 2024
    "…In this study, a searchable, updated, curated, and downloadable database of cyanobacteria bioactive compounds was designed, along with a machine-learning model to predict the compounds’ targets of newly discovered molecules. …"
  6. 326

    Globus Compute: Federated FaaS for Integrated Research Solutions حسب eRNZ Admin (6438486)

    منشور في 2025
    "…HPC enables researchers to perform simulations, modeling, and analysis, which are critical to predicting outcomes, guiding experiments, and developing new technologies [1]. …"
  7. 327

    Mean Annual Habitat Quality and Its Driving Variables in China (1990–2018) حسب ChenXi Zhu (21374876)

    منشور في 2025
    "…</p><p dir="ltr">(HQ: Habitat Quality; CZ: Climate Zone; FFI: Forest Fragmentation Index; GPP: Gross Primary Productivity; Light: Nighttime Lights; PRE: Mean Annual Precipitation Sum; ASP: Aspect; RAD: Solar Radiation; SLOPE: Slope; TEMP: Mean Annual Temperature; SM: Soil Moisture)</p><p dir="ltr"><br>A Python script used for modeling habitat quality, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), and implementation of four machine learning models to predict habitat quality.…"
  8. 328

    Fast, FAIR, and Scalable: Managing Big Data in HPC with Zarr حسب Alfonso Ladino (21447002)

    منشور في 2025
    "…Nesbitt1, Deepack Cheerian2 </p><ol><li>University of Illinois at Urbana-Champaign </li></ol><ol><li>Earthmover PBC </li></ol><p dir="ltr">The explosive growth of high-resolution, multidimensional data — from radar and satellite imagery to weather prediction, climate modeling, MRI and microscopy in medicine and biology, CFD simulations in engineering, and large-scale machine learning datasets — is pushing the limits of traditional data storage and processing methods. …"
  9. 329

    Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service) حسب U.S. Forest Service (17476914)

    منشور في 2025
    "…Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. …"
  10. 330

    Nucleotide analogue tolerant synthetic RdRp mutant construct for Surveillance and Therapeutic Resistance Monitoring in SARS-CoV-2 حسب Tahir Bhatti (20961974)

    منشور في 2025
    "…</p><p dir="ltr">Using the output of this locally trained AI model a synthetic RdRp region was generated incorporating those predicted mutations and was inserted into the consensus backbone.…"
  11. 331

    Core data حسب Baoqiang Chen (21099509)

    منشور في 2025
    "…</p><p><br></p><p dir="ltr"><b>Prediction and Design of 5′ UTRs</b></p><p dir="ltr">We developed a convolutional neural network (CNN) model to predict 5′ UTRs. …"
  12. 332

    <b>Historical Nifty 50 Constituent Weights (Rolling 20-Year Window)</b> حسب Sukrit Bera (22314922)

    منشور في 2025
    "…</li><li>Building features for quantitative models that aim to predict market movements.</li><li>Backtesting investment strategies benchmarked against the Nifty 50.…"
  13. 333

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows حسب Pierre-Alexis DELAROCHE (22092572)

    منشور في 2025
    "…Reproducibility Framework Container Orchestration # Kubernetes deployment manifest for reproducible environment apiVersion: apps/v1 kind: Deployment metadata: name: energy-benchmark-pod spec: replicas: 1 selector: matchLabels: app: benchmark-runner template: metadata: labels: app: benchmark-runner spec: nodeSelector: hardware.profile: "high-performance" containers: - name: benchmark-container image: albumforge/energy-benchmark:v2.1.3 resources: requests: cpu: "8000m" memory: "16Gi" nvidia.com/gpu: 1 limits: cpu: "16000m" memory: "32Gi" env: - name: MEASUREMENT_PRECISION value: "high" - name: POWER_SAMPLING_RATE value: "1000" # 1kHz sampling Dependency Management FROM ubuntu:22.04-cuda11.8-devel RUN apt-get update && apt-get install -y \ perf-tools \ powertop \ intel-gpu-tools \ nvidia-smi \ cpupower \ msr-tools \ && rm -rf /var/lib/apt/lists/* COPY requirements.txt /opt/ RUN pip install -r /opt/requirements.txt Usage Examples and API Documentation Python Data Analysis Interface import pandas as pd import numpy as np from scipy import stats import matplotlib.pyplot as plt import seaborn as sns # Load dataset with optimized dtypes for memory efficiency df = pd.read_csv('ecological_benchmark_dataset.csv', dtype={'hardware_config': 'category', 'test_type': 'category'}) # Compute energy efficiency metrics df['energy_per_photo'] = df['energy_consumption_kwh'] / df['photo_count'] df['co2_per_gigabyte'] = df['co2_equivalent_g'] / df['total_volume_gb'] # Statistical analysis with confidence intervals local_energy = df[df['test_type'] == 'local_processing']['energy_consumption_kwh'] cloud_energy = df[df['test_type'] == 'cloud_processing']['energy_consumption_kwh'] t_stat, p_value = stats.ttest_ind(local_energy, cloud_energy) effect_size = (cloud_energy.mean() - local_energy.mean()) / np.sqrt((cloud_energy.var() + local_energy.var()) / 2) print(f"Statistical significance: p = {p_value:.2e}") print(f"Cohen's d effect size: {effect_size:.3f}") R Statistical Computing Environment library(tidyverse) library(lme4) # Linear mixed-effects models library(ggplot2) library(corrplot) # Load and preprocess data df <- read_csv("ecological_benchmark_dataset.csv") %>% mutate( test_type = factor(test_type), hardware_config = factor(hardware_config), log_energy = log(energy_consumption_kwh), efficiency_ratio = energy_consumption_kwh / processing_time_sec ) # Mixed-effects regression model accounting for hardware heterogeneity model <- lmer(log_energy ~ test_type + log(photo_count) + (1|hardware_config), data = df) # Extract model coefficients with confidence intervals summary(model) confint(model, method = "Wald") Advanced Analytics and Machine Learning Integration Predictive Modeling Framework from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.model_selection import cross_val_score, GridSearchCV from sklearn.preprocessing import StandardScaler, LabelEncoder from sklearn.metrics import mean_absolute_error, r2_score # Feature engineering pipeline def create_feature_matrix(df): features = df[['photo_count', 'avg_file_size_mb', 'total_volume_gb']].copy() # Polynomial features for capturing non-linear relationships features['photo_count_squared'] = features['photo_count'] ** 2 features['size_volume_interaction'] = features['avg_file_size_mb'] * features['total_volume_gb'] # Hardware configuration encoding le = LabelEncoder() features['hardware_encoded'] = le.fit_transform(df['hardware_config']) return features # Energy consumption prediction model X = create_feature_matrix(df) y = df['energy_consumption_kwh'] # Hyperparameter optimization param_grid = { 'n_estimators': [100, 200, 500], 'max_depth': [10, 20, None], 'min_samples_split': [2, 5, 10], 'min_samples_leaf': [1, 2, 4] } rf_model = RandomForestRegressor(random_state=42) grid_search = GridSearchCV(rf_model, param_grid, cv=5, scoring='neg_mean_absolute_error') grid_search.fit(X, y) print(f"Best cross-validation score: {-grid_search.best_score_:.6f}") print(f"Optimal hyperparameters: {grid_search.best_params_}") Carbon Footprint Calculation Methodology Emission Factor Coefficients Carbon intensity calculations employ region-specific emission factors from the International Energy Agency (IEA) database: EMISSION_FACTORS = { 'EU_AVERAGE': 0.276, # kg CO₂/kWh (European Union average 2024) 'FRANCE': 0.057, # kg CO₂/kWh (Nuclear-dominant grid) 'GERMANY': 0.485, # kg CO₂/kWh (Coal transition period) 'NORWAY': 0.013, # kg CO₂/kWh (Hydroelectric dominant) 'GLOBAL_AVERAGE': 0.475 # kg CO₂/kWh (Global weighted average) } def calculate_carbon_footprint(energy_kwh: float, region: str = 'EU_AVERAGE') -> float: """ Calculate CO₂ equivalent emissions using lifecycle assessment methodology Args: energy_kwh: Energy consumption in kilowatt-hours region: Geographic region for emission factor selection Returns: CO₂ equivalent emissions in grams """ emission_factor = EMISSION_FACTORS.get(region, EMISSION_FACTORS['GLOBAL_AVERAGE']) co2_kg = energy_kwh * emission_factor return co2_kg * 1000 # Convert to grams Citation and Attribution This dataset is released under Creative Commons Attribution 4.0 International (CC BY 4.0) license. …"