Search alternatives:
code » core (Expand Search)
Showing 121 - 140 results of 171 for search '((python tool) OR (python code)) predicted', query time: 0.18s Refine Results
  1. 121

    Harmonic Shell Structures in MaDCoWS2 Clusters: Empirical Validation of Oscillatory Field Genesis (OFG) by Drippy Stone (21218843)

    Published 2025
    “…Analyzing 22,971 galaxy clusters from MaDCoWS2 DR2, we demonstrate: - **Harmonic shell spacings** (λ = 2π/|∇Φ·∇Θ|) in high-z clusters (z ≥ 1.5) - **Phase-locked redshift distributions** via Lomb-Scargle periodograms - **Predictive templates** for LSST void lensing (Δκ ≥ 0.5) and SPHEREx spectral harmonics Includes: - Cluster spacing histograms (`Cluster_Spacing_Histogram.csv`) - Redshift-phase coherence data (`theta_oscillation_peaks.csv`) - High-z cluster catalog (`High-Redshift_Cluster_z.csv`) - Full analysis code (Python/Jupyter) </p><p><br></p><p><br></p><p dir="ltr">Related Publications**: - Gonzalez et al. (2024) MaDCoWS2 DR2 Catalog (ApJ, 967, 123) - OFG Theoretical Framework (J.D.S. 2025, DeepSeek-verified) - **Tools Required**: Python 3.10+, NumPy, Pandas, Astropy - **Experiment Type**: Observational/Cosmological Simulation </p>…”
  2. 122

    <b>Alpha-Synuclein Degradome Foundation Atlas</b> by Axel Petzold (7076261)

    Published 2025
    “…All scripts are provided and fully documented in the accompanying publication [1] and dataset/code repositories [2,3].</p><p dir="ltr">This Atlas is ideal for researchers in neuroscience, proteomics, bioinformatics, and AI who are building tools to understand, predict, and intervene in protein degradation pathways relevant to human disease.…”
  3. 123

    <b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b> by Shubham Pawar (22471285)

    Published 2025
    “…</p><p dir="ltr"><b>Input:</b></p><ul><li><code>raw_data/glasgow_open_built/glasgow_open_built_areas.shp</code> - Grid defining sampling points</li></ul><p dir="ltr"><b>Command:</b></p><pre><pre>python svi_module/get_svi_data.py<br></pre></pre><p dir="ltr"><b>Output:</b></p><ul><li><code>svi_module/svi_data/svi_info.csv</code> - Image metadata (IDs, coordinates)</li><li><code>svi_module/svi_data/images/</code> - Downloaded street view images</li></ul><h3>Step 2: Predict Perceptions</h3><p dir="ltr">Use pre-trained deep learning models to predict perceptual qualities (safety, beauty, liveliness, etc.) from street view images.…”
  4. 124

    Albumin Degradome Foundation Atlas by Axel Petzold (7076261)

    Published 2025
    “…</p><h2><b>Data Format and Access</b></h2><ul><li><b>Primary file:</b> <code>Albumin_Degradome_Foundation_Atlas_v1.tar.xz</code><br>(contains all peptide tables in standard CSV format)</li><li><b>File Type:</b> ASCII comma-separated values (CSV)</li><li><b>Compression:</b> <code>xz -9 -T0</code> for maximal CPU-parallelised compression</li><li><b>Compatibility:</b></li><li><ul><li>R, Python, MATLAB, SAS</li><li>Excel, LibreOffice</li><li>Any proteomics workflow (e.g., Skyline, MaxQuant preprocessing, MS/MS spectral libraries)</li></ul></li></ul><h2><b>FAIR Principles</b></h2><p dir="ltr">This dataset is fully aligned with FAIR data standards:</p><ul><li><b>Findable:</b> Rich metadata, stable DOI, search-optimised description</li><li><b>Accessible:</b> Open-access Figshare repository</li><li><b>Interoperable:</b> Standard numeric and CSV formats</li><li><b>Reusable:</b> Transparent, reproducible Python source code included</li></ul><h2><b>Applications</b></h2><p dir="ltr">The Albumin Degradome Foundation Atlas supports research across multiple biomedical domains:</p><ul><li>Biomarker development in liver disease, kidney dysfunction, inflammation, and systemic disorders</li><li>Mass-spectrometry method development</li><li>Computational proteomics and peptide modelling</li><li>Autoimmunity and neo-epitope analysis</li><li>Protein–peptide interaction studies</li><li>Proteolytic pathway mapping and degradomics</li></ul><h2><b>Versioning and Future Work</b></h2><p dir="ltr">This is <b>Version 1</b> of the Albumin Degradome Foundation Atlas. …”
  5. 125

    <b>MSLU-100K: A multi-source land use dataset of Chinese major cities</b> by Yao Yao (7903457)

    Published 2025
    “…</li><li>The Manual Filtering.py-Based Multilevel Model Classification Method includes code to perform multilevel model predictions.</li></ul><h3>5.requirements.txt</h3><ul><li>Lists environment configurations and version specifications, including Python 3.7 and Pytorch 2.2.…”
  6. 126

    The Transcriptional Gradient in Negative-Strand RNA Viruses Suggest a Common RNA Transcription Mechanism: Model by Jean Peccoud (275555)

    Published 2025
    “…</p><p dir="ltr">Notebook2 contains the python code for making predictions of transcriptional gradients for gene-shuffled variants.…”
  7. 127

    SI files for "Addressing Hemolysis-Induced Loss of Sensitivity in Lateral Flow Assays of Blood Samples with Platinum-Coated Gold Nanoparticles and Machine Learning" by An Le (20473628)

    Published 2024
    “…</p><p dir="ltr">2) Model_testing.ipynb: Jupyter Notebook containing Python code for generate predictions for the 112 test strips</p><p dir="ltr">3) Best_model.keras: The final optimized machine learning model saved in Keras format.…”
  8. 128

    ncRNA.zip by Chongyi Jiang (20987126)

    Published 2025
    “…<h3><b>ncRNA (non-coding RNA) </b><b>predicted by</b><b> CPC2 (v 0.1) and PINC for 25 </b><b>grassland plant species.…”
  9. 129

    The Kidmose CANid Dataset (KCID) by Brooke Elizabeth Kidmose (13626754)

    Published 2025
    “…</p><h2>FILE TYPES</h2><p dir="ltr">The dataset provides data in three formats to support different use cases:</p><p dir="ltr"><b>.mf4 (MDF4) Format:</b> Measurement Data Format version 4 (MDF4)</p><ul><li>Binary format standardized by the Association for Standardization of Automation (ASAM)</li><li><b>Advantages:</b> Compact size, popular with automotive/CAN tools</li><li><b>Use case:</b> Native format from CSS Electronics CANEdge2</li><li><b>Reference:</b> <a href="https://www.csselectronics.com/pages/mf4-mdf4-measurement-data-format" rel="noreferrer" target="_blank">https://www.csselectronics.com/pages/mf4-mdf4-measurement-data-format</a></li></ul><p dir="ltr"><b>.log Format:</b> Text-based log format</p><ul><li><b>Compatibility:</b> Linux SocketCAN can-utils</li><li><b>Advantages:</b> Compatibility with SocketCAN can-utils; if a .log file is replayed, then data can be captured and monitored using Python's python-can library</li><li><b>References:</b> <a href="https://github.com/linux-can/can-utils" rel="noreferrer" target="_blank">https://github.com/linux-can/can-utils</a>, <a href="https://packages.debian.org/sid/can-utils" rel="noreferrer" target="_blank">https://packages.debian.org/sid/can-utils</a>, <a href="https://python-can.readthedocs.io/en/stable/" rel="noreferrer" target="_blank">https://python-can.readthedocs.io/en/stable/</a></li></ul><p dir="ltr"><b>.csv Format:</b> Text-based comma-separated values (CSV) format</p><ul><li><b>Advantages:</b> Easy to load with Python using the pandas library; easy to use with Python-based machine learning frameworks (e.g., scikit-learn, Keras, TensorFlow, PyTorch)</li><li><b>Usage:</b> Load with Python pandas: pd.read_csv()</li><li><b>Reference:</b> <a href="https://pandas.pydata.org/" rel="noreferrer" target="_blank">https://pandas.pydata.org/</a></li></ul><h2>SPECIALIZED EXPERIMENTS</h2><p dir="ltr">The KCID Dataset includes five specialized experiments:</p><p dir="ltr"><b>Fixed Routes Experiment</b></p><ul><li><b>Vehicles:</b> 2011 Chevrolet Traverse, 2017 Subaru Forester</li><li><b>Drivers:</b> male-30-55-3, male-30-55-4, male-over55-1, female-all-ages-1, female-all-ages-2, female-all-ages-5</li><li><b>Location:</b> Florida, USA (specific routes)</li><li><b>Data Collection Methods:</b> CSS Electronics CANEdge2, Kvaser Hybrid CAN-LIN</li><li><b>Purpose:</b> Capture CAN traces for specific, mappable routes; eliminate route-based variations in driver authentication data (e.g., low-speed local routes vs. high-speed long-distance routes)</li></ul><p dir="ltr"><b>OBD Requests and Responses Experiment</b></p><ul><li><b>Vehicle:</b> 2011 Chevrolet Traverse</li><li><b>Driver:</b> female-all-ages-5</li><li><b>Location:</b> Florida, USA</li><li><b>Data Collection Method:</b> CSS Electronics CANEdge2</li><li><b>Purpose:</b> Capture OBD requests and responses Arbitration IDs: <i>Requests:</i> 0x7DF, <i>Responses:</i> 0x7E8</li></ul><p dir="ltr"><b>Tire Pressure Experiment</b></p><ul><li><b>Vehicle:</b> 2011 Chevrolet Traverse</li><li><b>Driver:</b> female-all-ages-5</li><li><b>Location:</b> Florida, USA</li><li><b>Data Collection Method:</b> Kvaser Hybrid CAN-LIN</li><li><b>Purpose:</b> Capture normal and low tire pressure scenarios</li><li><b>Applications:</b> Detect tire pressure issues via CAN bus analysis; develop predictive maintenance strategies</li></ul><p dir="ltr"><b>Driving Modes and Features Experiment</b></p><ul><li><b>Vehicle:</b> 2017 Ford Focus</li><li><b>Driver:</b> male-30-55-1</li><li><b>Location:</b> Denmark</li><li><b>Data Collection Method:</b> Korlan USB2CAN</li><li><b>Purpose:</b> Capture different driving (and non-driving) modes and features</li><li><b>Examples:</b> gear (park, reverse, neutral, drive, sport); headlights on/off</li></ul><p dir="ltr"><b>Stationary Vehicles Experiment</b></p><ul><li><b>Vehicles:</b> 2024 Chevrolet Malibu, 2025 Toyota Corolla</li><li><b>Driver:</b> N/A (vehicles remained stationary)</li><li><b>Location:</b> Florida, USA</li><li><b>Data Collection Method:</b> Kvaser Hybrid CAN-LIN</li><li><b>Purpose:</b> Capture CAN bus traffic from very new, very modern vehicles; identify differences between an older vehicle's CAN bus (e.g., 2011 Chevrolet Traverse), and a newer vehicle's CAN bus (e.g., 2024 Chevrolet Malibu)</li></ul><h2>ADDITIONAL DOCUMENTATION</h2><p dir="ltr">Each "specialized experiment" directory contains a detailed README.md file with specific information about the experiment and the data collected.…”
  10. 130

    PepENS by Abel Chandra (16854753)

    Published 2025
    “…For the EfficientNetB0 model, the model weights can be downloaded from <a href="https://figshare.com/articles/software/EfficientNetB0_model_weights/27126339" rel="nofollow" target="_blank">here</a>.</p><h2>3. Predicting peptide binding sites on user input</h2><p dir="ltr">The PepENS tool allows users to predict peptide binding sites in their protein(s). …”
  11. 131

    DCPR_V1.0 by xiao han (21405770)

    Published 2025
    “…</p><p dir="ltr"><b>DCPR_codes</b>: Source code for DCPR model.</p><p dir="ltr"><b>Visualization</b>: Scripts for data visualization, including circadian curves (cosine model fitting), sample plots (predicted and real time), model performance (CDF curves, and accuracy plots).…”
  12. 132

    Synthetic Mental Health Survey Dataset by Shakil Hossain (22546658)

    Published 2025
    “…Data were generated using Python code to simulate realistic patterns and scoring based on psychological constructs.This dataset was to develop a machine learning model for predicting severity of multiple mental health disorders & overall Mental Health Status based on survey responses and psychological features.…”
  13. 133

    Monte Carlo Simulation for SAPAL Framework: AI-Augmented CI/CD Reliability by Rohit Dhawan (22457026)

    Published 2025
    “…</p><p dir="ltr">Files included: <br>- simulation.py: Python simulation code <br>- README.md: Complete documentation and methodology <br><br>This code supports the paper "AI-Augmented Reliability in Continuous Integration and Deployment: A Conceptual Framework for Predictive, Adaptive, and Self-Correcting Pipelines".…”
  14. 134

    <b>Antibiotics in the Global River System Arising from Human Consumption</b> by Heloisa Ehalt Macedo (10319300)

    Published 2025
    “…</p><p dir="ltr">The data repository includes 3 datasets:</p><p dir="ltr">1. Python code: python project repository including the structure necessary for the model to run.…”
  15. 135

    <b>Effects of Lifestyle and GLP-1RA based Interventions on Waist Circumference: A Systematic Review and Meta-Analysis</b> by Samit Ghosal (22024556)

    Published 2025
    “…</li><li><b>R scripts (00–06)</b> — reproducible code for primary, sensitivity, subgroup, and meta-regression analyses, forest plots, funnel plots, ROB2 templates, and prediction intervals.…”
  16. 136

    Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan) by Winston Yap (13771969)

    Published 2025
    “…Each folder contains the training and validation data, graph adjacency information, compiled reported energy consumption data for each city, and generated predictions.</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
  17. 137

    LGF v11 Final Archive: EWL, GMMI, LGF-EWI Metrics and Language Spacetime Specification (Dec 2025) by heojeongbeom heo (22544705)

    Published 2025
    “…This was confirmed by the final $\mathbf{\Psi}$ Operator simulation: the Python code returned <b>$\text{nan}$</b><b> (Not a Number)</b> due to the runaway divergence of the Language Potential ($\mathbf{\Phi_L}$), serving as the <b>computational proof of the </b><b>$\mathbf{T=0}$</b><b> structural failure.…”
  18. 138

    Leveraging explainable causal artificial intelligence to study forest gross primary productivity dynamics in China's protected areas by Pedro Cabral (18947566)

    Published 2025
    “…<p dir="ltr">A Python script used for modeling forest GPP in China´s Protected Areas, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), implementation of four machine learning models to predict forest GPP, XAI and causality analysis.…”
  19. 139

    Seattle Demo Accompanying Files by Winston Yap (13771969)

    Published 2025
    “…<p dir="ltr">We release the data, code, and prepared city graph objects to facilitate city scale building operating energy prediction with Seattle as a case study. …”
  20. 140

    IGD-cyberbullying-detection-AI by Bryan James (19921044)

    Published 2024
    “…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…”