-
81
PepENS
منشور في 2025"…</p><h2>Packages</h2><p dir="ltr">python 3.8.20<br>numpy 1.24.3<br>pandas 1.5.0<br>matplotlib 3.7.5<br>tensorflow 2.13.0<br>pyDeepInsight 0.2.0<br>scikit-learn 1.3.2<br>catboost 1.2.5</p>…"
-
82
Social media images of China's terraces
منشور في 2025"…Geo-tagged images were collected using Weibo cookies and Python-based scraping tools (available at: https://github.com/dataabc/weibo-search). …"
-
83
MCCN Case Study 3 - Select optimal survey locality
منشور في 2025"…</p><p dir="ltr">This is a simple implementation that uses four environmental attributes imported for all Australia (or a subset like NSW) at a moderate grid scale:</p><ol><li>Digital soil maps for key soil properties over New South Wales, version 2.0 - SEED - see <a href="https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html" target="_blank">https://esoil.io/TERNLandscapes/Public/Pages/SLGA/ProductDetails-SoilAttributes.html</a></li><li>ANUCLIM Annual Mean Rainfall raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-rainfall-raster-layer</a></li><li>ANUCLIM Annual Mean Temperature raster layer - SEED - see <a href="https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer" target="_blank">https://datasets.seed.nsw.gov.au/dataset/anuclim-annual-mean-temperature-raster-layer</a></li></ol><h4><b>Dependencies</b></h4><ul><li>This notebook requires Python 3.10 or higher</li><li>Install relevant Python libraries with: <b>pip install mccn-engine rocrate</b></li><li>Installing mccn-engine will install other dependencies</li></ul><h4><b>Overview</b></h4><ol><li>Generate STAC metadata for layers from predefined configuratiion</li><li>Load data cube and exclude nodata values</li><li>Scale all variables to a 0.0-1.0 range</li><li>Select four layers for comparison (soil organic carbon 0-30 cm, soil pH 0-30 cm, mean annual rainfall, mean annual temperature)</li><li>Select 10 random points within NSW</li><li>Generate 10 new layers representing standardised environmental distance between one of the selected points and all other points in NSW</li><li>For every point in NSW, find the lowest environmental distance to any of the selected points</li><li>Select the point in NSW that has the highest value for the lowest environmental distance to any selected point - this is the most different point</li><li>Clean up and save results to RO-Crate</li></ol><p><br></p>…"
-
84
Moulin distributions during 2016-2021 on the southwest Greenland Ice Sheet
منشور في 2025"…</p><p><br></p><ul><li>00_Satellite-derived moulins: Moulins directly mapped from Sentinel-2 imagery, representing actual moulin positions;</li><li>01_Snapped moulins: Moulins snapped to DEM-modeled supraglacial drainage networks, primarily used for analyses;</li><li>02_Moulin recurrences: Recurring moulins determined from the snapped moulins;</li><li>03_Internally drained catchments: Internally drained catchment (IDC) associated with each moulin;</li><li>04_Surface meltwater runoff: surface meltwater runoff calculated from MAR for the study area, elevation bins, and IDCs; </li><li>05_DEM-derived: Topographic features modeled from ArcticDEM, including elevation bins, depressions and drainage networks;</li><li>06_GWR: Variables for conducting geographically weighted regression (GWR) analysis;</li></ul><p><br></p><ul><li>Code_01_Mapping moulins on the southwestern GrIS.ipynb: A Jupyter Notebook to analyze moulin distributions, reproducing most of the analyses and figures presented in the manuscript using the provided datasets;</li><li>Code_02_pre1_calculate Strain Rate from XY ice velocity.py: A preprocessing Python script to calculate strain rate for the GWR analysis;</li><li>Code_02_pre2_calculate Driving Stress from ice thickness and surface slope.py: A preprocessing Python script to calculate driving stress for the GWR analysis;</li><li>Code_02_GWR analysis.ipynb: A Jupyter Notebook to conduct the GWR analysis using the provided datasets.…"
-
85
Scope of our collection of pathogen models of metabolism.
منشور في 2024"…This cladogram was created using the GraPhlAn python tool. (b) Our collection of GENREs represents 9 phyla, 17 classes, 36 orders, 94 genera, and 345 species of pathogens. …"
-
86
Digital Twin for Chemical Sciences
منشور في 2025"…The procedure for generating data in Figure 3 can be found in the demo notebook in Supplementary Code. The procedure for generating data of Figure 4 has been uploaded in fig4_figshare.zip file. …"
-
87
Sonification of Warming Stripes
منشور في 2025"…The sonification was produced using the STRAUSS sonification Python package.</p><p dir="ltr">Here we release:<br>1. …"
-
88
Supplementary material for "Euler inversion: Locating sources of potential-field data through inversion of Euler's homogeneity equation"
منشور في 2025"…</p><h2>License</h2><p dir="ltr">All Python source code (including <code>.py</code> and <code>.ipynb</code> files) is made available under the MIT license. …"
-
89
(A) Sampling locations and ranges of <i>I. feisthamelii</i> (purple) and <i>I. podalirius</i> (teal) butterflies.
منشور في 2025"…(B) Sampling locations of butterflies from the <i>Iphiclides</i> HZ. The dashed line represents the approximate HZ center, based on samples collected by Lafranchis et al. …"
-
90
Sonification of Growing Black Hole
منشور في 2024"…We used the open source Python package STRAUSS to produce the sonification (Trayford and Harrison 2023). …"
-
91
Audio Datasets of belt conveyor rollers in mines
منشور في 2024"…</li><li><b>Python Code: </b>This code validates the accuracy and usability of the audio feature datasets in real-time monitoring of belt conveyor roller operational states.…"
-
92
Dataset for CNN-based Bayesian Calibration of TELEMAC-2D Hydraulic Model
منشور في 2025"…</li><li>Files starting with <code>y_part</code> are flattened output arrays representing corresponding water depth values.…"
-
93
Cognitive Fatigue
منشور في 2025"…<br></p><p dir="ltr"><b>HCI features</b> encompass keyboard, mouse, and screenshot data. Below is a Python code snippet for extracting screenshot files from the screenshots CSV file.…"
-
94
Physiotherapist-Assisted Wrist Movement Protocol for EEG-Based Corticokinematic Coherence Assessment
منشور في 2025"…</li></ol><h4><b>Movement File Structure</b></h4><p dir="ltr">Each entry contains:</p><ul><li><code><strong>time</strong></code>: a 32-bit unsigned integer indicating the timestamp in milliseconds,</li><li><code><strong>x</strong></code>, <code><strong>y</strong></code>, <code><strong>z</strong></code>: 16-bit signed integers representing acceleration along the respective axes,</li><li><code><strong>trigger</strong></code>: an 8-bit unsigned integer used to mark event-related triggers for synchronization with the EEG data (e.g., movement onset).…"
-
95
Overview of generalized weighted averages.
منشور في 2025"…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…"
-
96
Minami_etal_2025
منشور في 2025"…<h2>Code files related to Minami et al (2025)</h2><p dir="ltr">accession_plot.py:Python script used to generate Fig4a.…"
-
97
Genomic Epidemiology of SARS-CoV-2 in Peru from 2020 to 2024
منشور في 2025"…</p><p dir="ltr"><b>Contents:</b></p><p><b>1. Analysis Code</b></p><p>Core Python scripts used to curate metadata, process genomic data, perform lineage assignments, compute summary statistics, and prepare inputs for downstream phylogenetic and phylogeographic analyses. …"
-
98
Global Aridity Index and Potential Evapotranspiration (ET0) Database: Version 3.1
منشور في 2025"…</p><p dir="ltr">The Python programming source code used to run the calculation of ET0 and AI is provided and available online on Figshare at:</p><p dir="ltr">https://figshare.com/articles/software/Global_Aridity_Index_and_Potential_Evapotranspiration_Climate_Database_v3_-_Algorithm_Code_Python_/20005589</p><p dir="ltr">Peer-Review Reference and Proper Citation:</p><p dir="ltr">Zomer, R.J.; Xu, J.; Trabuco, A. 2022. …"
-
99
Data Sheet 1_Nationwide epidemiological study of subarachnoid hemorrhage: trends in admissions, mortality, seasonality, costs, clipping, embolization, and the impact of COVID-19.pd...
منشور في 2025"…</p>Methods<p>This retrospective study analyzed secondary data from the Brazilian public health system (DataSUS) using ICD-10 code I60 for aSAH. Key metrics included the evaluation of admissions with time-series in Python, and mortality rates, procedures, and costs.…"
-
100
2024 HUD Point in Time Count Data by State and CoC with Serious Mental Illness and Chronic Substance Use Counts
منشور في 2025"…</p><p dir="ltr">HUD PIT Count reports for states, Washington, DC, and the 384 CoCs were systematically downloaded from the HUD Exchange website using a Python script developed using Cursor software. Cursor uses large language models, especially Claude Sonnet 4 (Anthropic), to generate code. …"