يعرض 121 - 140 نتائج من 2,537 نتيجة بحث عن 'algorithm from function', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 121

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  2. 122

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  3. 123

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  4. 124

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  5. 125

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  6. 126

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  7. 127

    Levy function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  8. 128

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  9. 129

    Rastrigin function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  10. 130

    Rosenbrock function losses for . حسب Shikun Chen (14625352)

    منشور في 2025
    "…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
  11. 131

    Flow chart diagram of quantum hash function. حسب Sultan H. Almotiri (14029251)

    منشور في 2024
    "…Our study addresses five major components of the quantum method to overcome these challenges: lattice-based cryptography, fully homomorphic algorithms, quantum key distribution, quantum hash functions, and blind quantum algorithms. …"
  12. 132

    NRPStransformer, an Accurate Adenylation Domain Specificity Prediction Algorithm for Genome Mining of Nonribosomal Peptides حسب Zhihan Zhang (1403308)

    منشور في 2025
    "…Our work lays a foundation to understand the sequence-to-function relationship of the bacterial adenylation domain and will facilitate the exploitation of nonribosomal peptides. …"
  13. 133
  14. 134
  15. 135
  16. 136

    Type-1 membership function for distance. حسب Seung-Min Ryu (21463891)

    منشور في 2025
    "…<div><p>In this study, we present an algorithm to estimate the distance between a vehicle and a target object using light from headlights captured by a camera. …"
  17. 137

    Type-1 membership function for speed. حسب Seung-Min Ryu (21463891)

    منشور في 2025
    "…<div><p>In this study, we present an algorithm to estimate the distance between a vehicle and a target object using light from headlights captured by a camera. …"
  18. 138
  19. 139

    The convergence curves of the test functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
  20. 140

    Single-peaked reference functions. حسب Ruiyu Zhan (21602031)

    منشور في 2025
    "…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"