بدائل البحث:
algorithm from » algorithm flow (توسيع البحث)
from function » from functional (توسيع البحث), fc function (توسيع البحث)
algorithm from » algorithm flow (توسيع البحث)
from function » from functional (توسيع البحث), fc function (توسيع البحث)
-
121
Rosenbrock function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
122
Levy function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
123
Rastrigin function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
124
Levy function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
125
Rastrigin function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
126
Levy function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
127
Levy function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
128
Rastrigin function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
129
Rastrigin function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
130
Rosenbrock function losses for .
منشور في 2025"…The approach leverages gradient information from neural networks to guide SLSQP optimization while maintaining XGBoost’s prediction precision. …"
-
131
Flow chart diagram of quantum hash function.
منشور في 2024"…Our study addresses five major components of the quantum method to overcome these challenges: lattice-based cryptography, fully homomorphic algorithms, quantum key distribution, quantum hash functions, and blind quantum algorithms. …"
-
132
NRPStransformer, an Accurate Adenylation Domain Specificity Prediction Algorithm for Genome Mining of Nonribosomal Peptides
منشور في 2025"…Our work lays a foundation to understand the sequence-to-function relationship of the bacterial adenylation domain and will facilitate the exploitation of nonribosomal peptides. …"
-
133
-
134
-
135
-
136
Type-1 membership function for distance.
منشور في 2025"…<div><p>In this study, we present an algorithm to estimate the distance between a vehicle and a target object using light from headlights captured by a camera. …"
-
137
Type-1 membership function for speed.
منشور في 2025"…<div><p>In this study, we present an algorithm to estimate the distance between a vehicle and a target object using light from headlights captured by a camera. …"
-
138
-
139
The convergence curves of the test functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"
-
140
Single-peaked reference functions.
منشور في 2025"…Utilizing the diabetes dataset from 130 U.S. hospitals, the LGWO-BP algorithm achieved a precision rate of 0.97, a sensitivity of 1.00, a correct classification rate of 0.99, a harmonic mean of precision and recall (F1-score) of 0.98, and an area under the ROC curve (AUC) of 1.00. …"