-
41
-
42
-
43
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
44
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
45
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
46
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
47
Normalized computation rate for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
48
Summary of Notations Used in this paper.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
49
-
50
The overview of the proposed method.
Published 2023“…<p>Five main steps, including reading, preprocessing, feature selection, classification, and association rule mining were applied to the mRNA expression data. 1) Required data was collected from the TCGA repository and got organized during the reading step. 2) The pre-processing step includes two sub-steps, nested cross-validation and data normalization. 3) The feature-selection step contains two parts: the filter method based on a t-test and the wrapper method based on binary Non-Dominated Sorting Genetic Algorithm II (NSGAII) for mRNA data, in which candidate mRNAs with more relevance to early-stage and late-stage Papillary Thyroid Cancer (PTC) were selected. 4) Multi-classifier models were utilized to evaluate the discrimination power of the selected mRNAs. 5) The Association Rule Mining method was employed to discover the possible hidden relationship between the selected mRNAs and early and late stages of PTC firstly, and the complex relationship among the selected mRNAs secondly.…”
-
51
-
52
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Despite the increased complexity associated with binary classification, it remained more efficient, offering higher classification accuracy for samples and facilitating the selection of the most relevant time or variables, such as cooking time ≤ 30 minutes. …”
-
53
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Despite the increased complexity associated with binary classification, it remained more efficient, offering higher classification accuracy for samples and facilitating the selection of the most relevant time or variables, such as cooking time ≤ 30 minutes. …”
-
54
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
55
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
56
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
57
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
58
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
59
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
60
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”