بدائل البحث:
resource optimization » resource utilization (توسيع البحث), resource utilisation (توسيع البحث), resource limitations (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
resource optimization » resource utilization (توسيع البحث), resource utilisation (توسيع البحث), resource limitations (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
1
-
2
-
3
-
4
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
13
-
14
-
15
-
16
-
17
-
18
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
19
-
20
An Example of a WPT-MEC Network.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"