Search alternatives:
driven optimization » design optimization (Expand Search), process optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
driven optimization » design optimization (Expand Search), process optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
-
1
-
2
Event-driven data flow processing.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
3
Flow diagram of the proposed model.
Published 2025“…Local Interpretable Model-agnostic Explanations (LIME) were applied to improve interpretability. Across all algorithm models, LR–ABC hybrids outperformed their baseline models (e.g., Random Forest: 85.2% → 91.36% accuracy). …”
-
4
Confusion matrix.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
5
Parameter settings.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
6
Dynamic resource allocation process.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
7
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
Published 2025“…</p>Results and Discussion<p>Experimental evaluation across varied athlete cohorts demonstrates superior performance in risk stratification accuracy, diagnostic plausibility, and model transparency compared to traditional screening algorithms. This multimodal framework not only advances the fidelity of cardiovascular screening in athletic populations but also establishes a scalable and principled foundation for integrating computational diagnostics with real-world cardiological assessment practices.…”