بدائل البحث:
process optimization » robust optimization (توسيع البحث), model optimization (توسيع البحث), policy optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث), bayesian optimization (توسيع البحث)
process optimization » robust optimization (توسيع البحث), model optimization (توسيع البحث), policy optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث), bayesian optimization (توسيع البحث)
-
1
-
2
Dataset 1: Zip file containing the figures of the presented methods and results in jpeg files
منشور في 2025"…<p dir="ltr">Figures represented here illustrates the <b>metaheuristic-based band selection framework</b> for hyperspectral image classification using <b>Binary Jaya Algorithm enhanced with a mutation operator</b> to improve population diversity and avoid premature convergence. …"
-
3
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…</p><p dir="ltr">Astrocytes were dissociated from E18 mouse cortical tissue, and image data were processed using a Cellpose 2.0 model to mask nuclei. …"
-
4
-
5
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
منشور في 2025"…This strategy </p><p dir="ltr">not only improves detection efficiency and accuracy but also supports early diagnosis and treatment planning, </p><p dir="ltr">leading to better patient outcomes. By leveraging the binary GWO algorithm to optimize the feature selection </p><p dir="ltr">process and CNNs for image classification, the proposed approach reduces computational costs while increasing </p><p dir="ltr">classification accuracy. …"
-
6
-
7
-
8
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
-
9
Steps in the extraction of 14 coordinates from the CT slices for the curved MPR.
منشور في 2025"…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …"
-
10
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
منشور في 2025"…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …"