-
1
-
2
Classification performance after optimization.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
3
-
4
Feature selection results.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
5
Feature selection metrics and their definitions.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
6
ANOVA test for feature selection.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
7
Wilcoxon test results for feature selection.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
8
Classification performance of ML and DL models.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
9
ANOVA test for optimization results.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
10
Wilcoxon test results for optimization.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
11
Feature selection results.
منشور في 2025"…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …"
-
12
Classification baseline performance.
منشور في 2025"…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …"
-
13
Statistical summary of all models.
منشور في 2025"…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …"
-
14
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
15
ANOVA test result.
منشور في 2025"…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …"
-
16
Summary of literature review.
منشور في 2025"…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …"
-
17
-
18
Hyperparameters of the LSTM Model.
منشور في 2025"…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"
-
19
The AD-PSO-Guided WOA LSTM framework.
منشور في 2025"…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"
-
20
Prediction results of individual models.
منشور في 2025"…This effectively balances exploration and exploitation, and addresses the early convergence problem of the original algorithms. To choose the most crucial characteristics of the dataset, the feature selection method employs the binary format of AD-PSO-Guided WOA. …"