Showing 1 - 15 results of 15 for search 'binary search process optimization algorithm', query time: 0.16s Refine Results
  1. 1
  2. 2
  3. 3

    Classification performance after optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  4. 4

    ANOVA test for optimization results. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  5. 5

    Wilcoxon test results for optimization. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  6. 6

    Wilcoxon test results for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  7. 7

    Feature selection metrics and their definitions. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  8. 8

    Statistical summary of all models. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  9. 9

    Feature selection results. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  10. 10

    ANOVA test for feature selection. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  11. 11

    Classification performance of ML and DL models. by Amal H. Alharbi (21755906)

    Published 2025
    “…The proposed approach integrates binary feature selection and metaheuristic optimization into a unified optimization process, effectively balancing exploration and exploitation to handle complex, high-dimensional datasets. …”
  12. 12

    Hyperparameters of the LSTM Model. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …”
  13. 13

    The AD-PSO-Guided WOA LSTM framework. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …”
  14. 14

    Prediction results of individual models. by Ahmed M. Elshewey (21463867)

    Published 2025
    “…The AD-PSO-Guided WOA overcomes limitations of conventional optimization algorithms, such as premature convergence by balancing global search (exploration) and local refinement (exploitation). …”
  15. 15