يعرض 21 - 40 نتائج من 89 نتيجة بحث عن 'code complex classification', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 21
  2. 22
  3. 23

    Flowchart of exclusion and inclusion process. حسب Nina Vibeche Skei (20904020)

    منشور في 2025
    "…<div><p>Background</p><p>In observational studies that use administrative data, it is essential to report technical details such as the number of International Classification of Disease (ICD) coding fields extracted. …"
  4. 24

    Code repository حسب Dimitrios Iason Papadopoulos (21556811)

    منشور في 2025
    "…<pre>This repository contains the code that was used to conduct the experiments that are mentioned in the paper.…"
  5. 25

    Model code حسب Waltraud Schulze (20695250)

    منشور في 2025
    "…<p dir="ltr">Quantification and classification of leaf surface texture complexity: SEM images were used as databases to quantify the texture complexity of leaf abaxial surfaces. …"
  6. 26
  7. 27
  8. 28
  9. 29
  10. 30
  11. 31
  12. 32
  13. 33
  14. 34

    Dataset: OHID-1: A New Large Hyperspectral Image Dataset for Multi-Classification حسب Jianwen Deng (19780538)

    منشور في 2024
    "…</p>code<p dir="ltr">The "HSI_Classification" folder contains the code for ID CNN, 2D CNN, 3D CNN, and SVM. …"
  15. 35

    Additional file 5 of Chemical classification program synthesis using generative artificial intelligence حسب Christopher J. Mungall (6793694)

    منشور في 2025
    "…This is considerably more complex, but it achieves a higher F1 score (c) evolution of F1 scores. …"
  16. 36
  17. 37

    Supplementary Data to "Model interpretability enhances domain generalization in the case of textual complexity modeling" حسب Frans Van der Sluis (18365826)

    منشور في 2025
    "…</li></ul><h3>Performance Metrics</h3><p dir="ltr">Metrics listed are evaluated during the outer loop of the training process.</p><ul><li><b>Classification Metrics (</b><code><strong>_classif_</strong></code><b>)</b>: Includes accuracy (acc), precision, recall, f1 score, true negatives (tn), true positives (tp), false negatives (fn), and false positives (fp) for task 1 (text classification).…"
  18. 38

    SH-DETR architecture. حسب Shouluan Wu (22601074)

    منشور في 2025
    "…In this context, we introduce a deep learning framework that combines multi-channel random coding with modules for multi-scale feature fusion to tackle the challenges of low recognition accuracy and insufficient classification power prevalent in conventional models. …"
  19. 39

    Experimental hardware and software configuration. حسب Shouluan Wu (22601074)

    منشور في 2025
    "…In this context, we introduce a deep learning framework that combines multi-channel random coding with modules for multi-scale feature fusion to tackle the challenges of low recognition accuracy and insufficient classification power prevalent in conventional models. …"
  20. 40

    The detection performance for different dataset. حسب Shouluan Wu (22601074)

    منشور في 2025
    "…In this context, we introduce a deep learning framework that combines multi-channel random coding with modules for multi-scale feature fusion to tackle the challenges of low recognition accuracy and insufficient classification power prevalent in conventional models. …"