يعرض 1 - 20 نتائج من 22,495 نتيجة بحث عن 'differences ((using algorithm) OR (learning algorithm))', وقت الاستعلام: 0.72s تنقيح النتائج
  1. 1
  2. 2
  3. 3
  4. 4

    Arc strengths obtained using different structure learning algorithms. حسب Mandana Rezaeiahari (11614313)

    منشور في 2021
    "…<p>Arc strengths obtained using different structure learning algorithms.</p>…"
  5. 5

    Compare different datasets using the same algorithm. حسب Qingtao Zeng (6270308)

    منشور في 2025
    "…<p>Compare different datasets using the same algorithm.</p>…"
  6. 6

    Evaluation of pre-treatment models using different machine learning algorithms. حسب Yiran Li (1818355)

    منشور في 2025
    "…<p>Evaluation of pre-treatment models using different machine learning algorithms.</p>…"
  7. 7

    Evaluation of post-treatment models using different machine learning algorithms. حسب Yiran Li (1818355)

    منشور في 2025
    "…<p>Evaluation of post-treatment models using different machine learning algorithms.</p>…"
  8. 8

    A summary of the algorithm used in the literature for different objectives. حسب Md Abdur Razzak (9659144)

    منشور في 2023
    "…<p>A summary of the algorithm used in the literature for different objectives.…"
  9. 9
  10. 10
  11. 11

    Iteration curves of different algorithms. حسب Tengfei Ma (597633)

    منشور في 2025
    "…<div><p>To address the limitations of the Zebra Optimization Algorithm (ZOA), including insufficient late-stage optimization search capability, susceptibility to local optima, slow convergence, and inadequate exploration, this paper proposes an enhanced Zebra Optimization Algorithm integrating opposition-based learning and a dynamic elite-pooling strategy (OP-ZOA: Opposition-Based Learning Dynamic Elite-Pooling Zebra Optimization Algorithm). he proposed search algorithm employs a good point set-elite opposition-based learning mechanism to initialize the population, enhancing diversity and facilitating escape from local optima. …"
  12. 12

    Algorithms used in this study. حسب Daniel Sanchez-Gomez (19065975)

    منشور في 2024
    "…This allowed us to develop a machine learning-based framework for the prediction of bead-forming minerals by training and benchmarking 13 of the most widely used supervised algorithms. …"
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20