Search alternatives:
process optimization » robust optimization (Expand Search), model optimization (Expand Search), policy optimization (Expand Search)
phase process » whole process (Expand Search)
process optimization » robust optimization (Expand Search), model optimization (Expand Search), policy optimization (Expand Search)
phase process » whole process (Expand Search)
-
1
Proposed architecture testing phase.
Published 2025“…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
-
2
-
3
-
4
Comparison with existing SOTA techniques.
Published 2025“…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
-
5
Proposed inverted residual parallel block.
Published 2025“…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
-
6
Inverted residual bottleneck block.
Published 2025“…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
-
7
Sample classes from the HMDB51 dataset.
Published 2025“…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
-
8
Sample classes from UCF101 dataset [40].
Published 2025“…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
-
9
Self-attention module for the features learning.
Published 2025“…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
-
10
Residual behavior.
Published 2025“…The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. The trained model is employed in the testing phase for the feature extraction from the self-attention layer and passed to the shallow wide neural network classifier for the final classification. …”
-
11
-
12
Overall framework diagram.
Published 2025“…Secondly, addressing the issue of weight and threshold initialization in BPNN, the Coati Optimization Algorithm (COA) was employed to optimize the network (COA-BPNN). …”
-
13
-
14
-
15
-
16
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
Published 2025“…</li><li>The dataframe of extracted colour features from all leaf images and lab variables (ecophysiological predictors and variables to be predicted)</li><li>Set of scripts used for image pre-processing, features extraction, data analytsis, visualization and Machine learning algorithms training, using ImageJ, R and Python.…”