يعرض 141 - 160 نتائج من 1,530 نتيجة بحث عن 'generation optimization algorithm', وقت الاستعلام: 0.21s تنقيح النتائج
  1. 141
  2. 142
  3. 143
  4. 144
  5. 145
  6. 146

    Parameters of each algorithm. حسب Nanqi Li (11640083)

    منشور في 2025
    "…This paper proposes a milling parameter optimization method utilizing the snake algorithm with multi-strategy fusion to improve surface quality. …"
  7. 147
  8. 148
  9. 149

    Flowchart of the proposed GSS algorithm. حسب Amir Fatah (19812492)

    منشور في 2024
    الموضوعات:
  10. 150

    Path length variation diagram of each algorithm. حسب Yun Qi (560401)

    منشور في 2025
    الموضوعات:
  11. 151

    Simulation results of each algorithm path map. حسب Yun Qi (560401)

    منشور في 2025
    الموضوعات:
  12. 152

    Improved random forest algorithm. حسب Zhen Zhao (159931)

    منشور في 2025
    "…Additionally, considering the imbalanced in population spatial distribution, we used the K-means ++ clustering algorithm to cluster the optimal feature subset, and we used the bootstrap sampling method to extract the same amount of data from each cluster and fuse it with the training subset to build an improved random forest model. …"
  13. 153

    K-means++ clustering algorithm. حسب Zhen Zhao (159931)

    منشور في 2025
    "…Additionally, considering the imbalanced in population spatial distribution, we used the K-means ++ clustering algorithm to cluster the optimal feature subset, and we used the bootstrap sampling method to extract the same amount of data from each cluster and fuse it with the training subset to build an improved random forest model. …"
  14. 154
  15. 155
  16. 156
  17. 157
  18. 158
  19. 159
  20. 160

    Compare algorithm parameter settings. حسب Yuqi Xiong (12343771)

    منشور في 2025
    "…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …"