Showing 1 - 8 results of 8 for search 'multi-algorithm spatial learning', query time: 0.15s Refine Results
  1. 1
  2. 2

    Image 4_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg by Minhao Huang (4952764)

    Published 2025
    “…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
  3. 3

    Table 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx by Minhao Huang (4952764)

    Published 2025
    “…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
  4. 4

    Table 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx by Minhao Huang (4952764)

    Published 2025
    “…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
  5. 5

    Image 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg by Minhao Huang (4952764)

    Published 2025
    “…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
  6. 6

    Image 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg by Minhao Huang (4952764)

    Published 2025
    “…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
  7. 7

    Table 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx by Minhao Huang (4952764)

    Published 2025
    “…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
  8. 8

    Image 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg by Minhao Huang (4952764)

    Published 2025
    “…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”