Search alternatives:
using learning » long learning (Expand Search), writing learning (Expand Search)
using learning » long learning (Expand Search), writing learning (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
Image 4_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
13
Table 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
14
Table 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
15
Image 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
16
Image 2_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
17
Table 3_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.xlsx
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
18
Image 1_Integrated machine learning analysis of 30 cell death patterns identifies a novel prognostic signature in glioma.jpeg
Published 2025“…A pan-death prognostic signature (Cell-Death Score, CDS), constructed via multi-algorithm machine learning and optimized using CoxBoost to incorporate 25 key genes, demonstrated robust performance in training (1-/3-year AUC = 0.894/0.943) and validation cohort (C-index = 0.717), effectively stratifying high-risk patients (HR = 3.21, p < 0.0001). …”
-
19
Spatial locations of reported FMD outbreaks
Published 2025“…Centered on known outbreak information, we predicted high-risk areas using similar regional ecological features. Using a multi-algorithm machine-learning ensemble that includes random forest, support vector, and gradient boosting, 15 predictive variables (i.e livestock densities, land cover, and climate), 660 FMD outbreaks from 13 years (2009-2022) in the region including the outbreaks from India, Bangladesh, and Sri Lanka we identified that Sri Lanka and Bangladesh appeared to have low to medium outbreak risk in the range of 0.04 to 0.55. …”
-
20
Random Forest feature importance plot.
Published 2025“…Centered on known outbreak information, we predicted high-risk areas using similar regional ecological features. Using a multi-algorithm machine-learning ensemble that includes random forest, support vector, and gradient boosting, 15 predictive variables (i.e., livestock densities, land cover, and climate), 660 FMD outbreaks from 13 years (2009–2022) in the region including the outbreaks from India, Bangladesh, and Sri Lanka we identified that Sri Lanka and Bangladesh appeared to have low to medium outbreak risk in the range of 0.04 to 0.55. …”