Search alternatives:
resources encryption » resource extraction (Expand Search)
multiple resources » multiple sources (Expand Search), multiple features (Expand Search), multiple measures (Expand Search)
resources encryption » resource extraction (Expand Search)
multiple resources » multiple sources (Expand Search), multiple features (Expand Search), multiple measures (Expand Search)
-
1
Encryption time (sec).
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
2
Encryption time (sec).
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
3
Encryption throughput (Byte/sec).
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
4
Encryption throughput (Kb/sec).
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
5
12x12 bit integer multiplication unit.
Published 2025“…This work presents an FPGA implementation of conflict-free and pipelined single-path delay feedback based NTT core for Kyber by employing various architectural optimizations including pipelining, resource sharing and algorithmic optimizations like multiplier-less Montgomery reduction algorithm. …”
-
6
6x6 bit integer multiplication unit.
Published 2025“…This work presents an FPGA implementation of conflict-free and pipelined single-path delay feedback based NTT core for Kyber by employing various architectural optimizations including pipelining, resource sharing and algorithmic optimizations like multiplier-less Montgomery reduction algorithm. …”
-
7
-
8
Overview of LWLCM.
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
9
Key initialization.
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
10
Decryption Time(sec).
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
11
Key-Keystream Avalanche effect.
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
12
Memory usage (Kb).
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
13
Key-Cipher Text Avalanche effect.
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
14
Average Avalanche effect for Key-Cipher text.
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
15
Bifurcation diagram of logistic map.
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
16
Decryption time (sec).
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
17
A comparative analysis of existing work.
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
18
Key issues with traditional cryptography.
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
19
Experimental setup of Raspberry Pi.
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”
-
20
Decryption throughput (Byte/sec).
Published 2025“…Experimental results demonstrate that each component significantly improves the cipher’s overall performance and security, hence confirming the architecture’s design and also demonstrate that the proposed cipher exceeds the performance of current algorithms, including Grain-128 and RSA-1024, in terms of encryption/decryption time, throughput, and energy efficiency, while maintaining comparable statistical randomness to AES and Trivium. …”