-
281
Monte Carlo Simulation for SAPAL Framework: AI-Augmented CI/CD Reliability
Published 2025“…<p dir="ltr">This dataset contains a Monte Carlo simulation demonstrating noise reduction in CI/CD pipelines using the Sense-Analyze-Predict-Act-Learn (SAPAL) framework. …”
-
282
Integrated experimental and techno-economic modeling of renewable natural gas production from prairie biomass
Published 2025“…Statistical models were developed from the experimental data to predict these responses and were subsequently incorporated into a techno-economic model developed in Python using BioSTEAM. …”
-
283
DCPR_V1.0
Published 2025“…</p><h3><b>Configuration</b></h3><p dir="ltr">It is recommended to use the conda environment (python 3.8). See environment.yaml for details.…”
-
284
Geometric Mechanics and Stokes’ Theorem in Robotic Locomotion
Published 2025“…<p dir="ltr">This research develops a rigorous mathematical framework for analyzing and predicting robotic locomotion using the principles of geometric mechanics. …”
-
285
Dataset for the Modeling and Bibliometric Analysis of Business plan for Entrepreneurship
Published 2025“…For modeling, Python was applied to generate projection analyses of annual scientific production using polynomial regression. …”
-
286
<b>Effects of Lifestyle and GLP-1RA based Interventions on Waist Circumference: A Systematic Review and Meta-Analysis</b>
Published 2025“…</li><li><b>R scripts (00–06)</b> — reproducible code for primary, sensitivity, subgroup, and meta-regression analyses, forest plots, funnel plots, ROB2 templates, and prediction intervals.</li><li><b>Python script (05_correlation_python.py)</b> — scatter plot of WC vs. …”
-
287
Spatiotemporal Soil Erosion Dataset for the Yarlung Tsangpo River Basin (1990–2100)
Published 2025“…The corrected bias functions were then applied to adjust the years (2020–2100) of daily rainfall data using the "ibicus" package, an open-source Python tool for bias adjustment and climate model evaluation. …”
-
288
Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil)
Published 2025“…<p dir="ltr">This deposit provides the Python notebook and the input dataset used in the study “Numerical analysis and modeling of water quality indicators in the Ribeirão João Leite reservoir (Goiás, Brazil).” …”
-
289
6. Motif Code Theory
Published 2025“…<p dir="ltr">The Motif Code Theory (MCT) simulation code, mct_unified_code.py, is a Python 3.9 script that models the universe as a time-dependent directed multigraph G(t) = (V(t), E(t)) with N=10^7 vertices (representing quantum fields/particles) and edges (interactions). …”
-
290
Ambient Air Pollutant Dynamics (2010–2025) and the Exceptional Winter 2016–17 Pollution Episode: Implications for a Uranium/Arsenic Exposure Event
Published 2025“…<br></li></ul></li><li><b>Imputation_Air_Pollutants_NABEL.py</b> (Python Script)</li><li><ul><li>The Python code used to perform all data cleaning, imputation, plausibility checks, and calculations, generating the Imputed_AP_Data_Zurich_2010-25 sheet and associated stats/legend info from the raw data. …”
-
291
The Kidmose CANid Dataset (KCID)
Published 2025“…</p><h2>FILE TYPES</h2><p dir="ltr">The dataset provides data in three formats to support different use cases:</p><p dir="ltr"><b>.mf4 (MDF4) Format:</b> Measurement Data Format version 4 (MDF4)</p><ul><li>Binary format standardized by the Association for Standardization of Automation (ASAM)</li><li><b>Advantages:</b> Compact size, popular with automotive/CAN tools</li><li><b>Use case:</b> Native format from CSS Electronics CANEdge2</li><li><b>Reference:</b> <a href="https://www.csselectronics.com/pages/mf4-mdf4-measurement-data-format" rel="noreferrer" target="_blank">https://www.csselectronics.com/pages/mf4-mdf4-measurement-data-format</a></li></ul><p dir="ltr"><b>.log Format:</b> Text-based log format</p><ul><li><b>Compatibility:</b> Linux SocketCAN can-utils</li><li><b>Advantages:</b> Compatibility with SocketCAN can-utils; if a .log file is replayed, then data can be captured and monitored using Python's python-can library</li><li><b>References:</b> <a href="https://github.com/linux-can/can-utils" rel="noreferrer" target="_blank">https://github.com/linux-can/can-utils</a>, <a href="https://packages.debian.org/sid/can-utils" rel="noreferrer" target="_blank">https://packages.debian.org/sid/can-utils</a>, <a href="https://python-can.readthedocs.io/en/stable/" rel="noreferrer" target="_blank">https://python-can.readthedocs.io/en/stable/</a></li></ul><p dir="ltr"><b>.csv Format:</b> Text-based comma-separated values (CSV) format</p><ul><li><b>Advantages:</b> Easy to load with Python using the pandas library; easy to use with Python-based machine learning frameworks (e.g., scikit-learn, Keras, TensorFlow, PyTorch)</li><li><b>Usage:</b> Load with Python pandas: pd.read_csv()</li><li><b>Reference:</b> <a href="https://pandas.pydata.org/" rel="noreferrer" target="_blank">https://pandas.pydata.org/</a></li></ul><h2>SPECIALIZED EXPERIMENTS</h2><p dir="ltr">The KCID Dataset includes five specialized experiments:</p><p dir="ltr"><b>Fixed Routes Experiment</b></p><ul><li><b>Vehicles:</b> 2011 Chevrolet Traverse, 2017 Subaru Forester</li><li><b>Drivers:</b> male-30-55-3, male-30-55-4, male-over55-1, female-all-ages-1, female-all-ages-2, female-all-ages-5</li><li><b>Location:</b> Florida, USA (specific routes)</li><li><b>Data Collection Methods:</b> CSS Electronics CANEdge2, Kvaser Hybrid CAN-LIN</li><li><b>Purpose:</b> Capture CAN traces for specific, mappable routes; eliminate route-based variations in driver authentication data (e.g., low-speed local routes vs. high-speed long-distance routes)</li></ul><p dir="ltr"><b>OBD Requests and Responses Experiment</b></p><ul><li><b>Vehicle:</b> 2011 Chevrolet Traverse</li><li><b>Driver:</b> female-all-ages-5</li><li><b>Location:</b> Florida, USA</li><li><b>Data Collection Method:</b> CSS Electronics CANEdge2</li><li><b>Purpose:</b> Capture OBD requests and responses Arbitration IDs: <i>Requests:</i> 0x7DF, <i>Responses:</i> 0x7E8</li></ul><p dir="ltr"><b>Tire Pressure Experiment</b></p><ul><li><b>Vehicle:</b> 2011 Chevrolet Traverse</li><li><b>Driver:</b> female-all-ages-5</li><li><b>Location:</b> Florida, USA</li><li><b>Data Collection Method:</b> Kvaser Hybrid CAN-LIN</li><li><b>Purpose:</b> Capture normal and low tire pressure scenarios</li><li><b>Applications:</b> Detect tire pressure issues via CAN bus analysis; develop predictive maintenance strategies</li></ul><p dir="ltr"><b>Driving Modes and Features Experiment</b></p><ul><li><b>Vehicle:</b> 2017 Ford Focus</li><li><b>Driver:</b> male-30-55-1</li><li><b>Location:</b> Denmark</li><li><b>Data Collection Method:</b> Korlan USB2CAN</li><li><b>Purpose:</b> Capture different driving (and non-driving) modes and features</li><li><b>Examples:</b> gear (park, reverse, neutral, drive, sport); headlights on/off</li></ul><p dir="ltr"><b>Stationary Vehicles Experiment</b></p><ul><li><b>Vehicles:</b> 2024 Chevrolet Malibu, 2025 Toyota Corolla</li><li><b>Driver:</b> N/A (vehicles remained stationary)</li><li><b>Location:</b> Florida, USA</li><li><b>Data Collection Method:</b> Kvaser Hybrid CAN-LIN</li><li><b>Purpose:</b> Capture CAN bus traffic from very new, very modern vehicles; identify differences between an older vehicle's CAN bus (e.g., 2011 Chevrolet Traverse), and a newer vehicle's CAN bus (e.g., 2024 Chevrolet Malibu)</li></ul><h2>ADDITIONAL DOCUMENTATION</h2><p dir="ltr">Each "specialized experiment" directory contains a detailed README.md file with specific information about the experiment and the data collected.…”
-
292
Dataset for the Modeling and Bibliometric Analysis of E-business in Entrepreneurship (1997–2024)
Published 2025“…For the modeling component, a predictive analysis was conducted using Python to forecast future publication volumes. …”
-
293
<b>Engineered Muscle-Derived Extracellular Vesicles Boost Insulin Sensitivity and Glucose Regulation</b>
Published 2025“…Proteomic analyses were run with Python-V3.9.2 miRNA and protein figures were plotted using R</p>…”
-
294
Global Research Dataset on Social Media in Entrepreneurial Startup (2009–2024)
Published 2025“…Visualization and analysis were conducted using Microsoft Excel for summary statistics, R Biblioshiny for thematic and trend mapping, and Python for projection modeling.…”
-
295
ML for anomalous diffusion model
Published 2025“…</p><p dir="ltr">5.Use the model_step3.py file to perform classification prediction using a RandomForestClassifier.…”
-
296
RNACOREX package workflow.
Published 2025“…These sets are then used to build probabilistic models based on Conditional Linear Gaussian (CLG) classifiers, which allow both prediction on new samples and validation of the inferred networks.…”
-
297
Performance.
Published 2025“…These sets are then used to build probabilistic models based on Conditional Linear Gaussian (CLG) classifiers, which allow both prediction on new samples and validation of the inferred networks.…”
-
298
Computing speed and memory usage.
Published 2025“…Light predictions with the replicated model were simulated using the default model parametrization (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0330681#pone.0330681.t001" target="_blank">Table 1</a>) but for varying volume along radial direction changing the parameter xymax to with the maximum depth zmax. …”
-
299
<b>DeepB3Pred</b>
Published 2025“…<p dir="ltr">Pipeline</p><p dir="ltr">DeepB3Pred uses the following dependencies:</p><p dir="ltr">MATLAB2018a python 3.10 numpy scipy pandas scikit-learn catboost= 1.1.1 gc_forset xgboost-1.5.0 tensorflow=1.15.0 Keras=2.1.6</p><p dir="ltr">Guiding principles:</p><p dir="ltr">The data contains a training dataset and a testing dataset. …”
-
300
DeepB3Pred - code
Published 2025“…<p dir="ltr">DeepB3Pred </p><p dir="ltr">uses the following dependencies:</p><p dir="ltr">MATLAB2018a python 3.10 numpy scipy pandas scikit-learn catboost= 1.1.1 gc_forset xgboost-1.5.0 tensorflow=1.15.0 Keras=2.1.6</p><p dir="ltr">Guiding principles:</p><p dir="ltr">The data contains a training dataset and a testing dataset. …”