Showing 161 - 180 results of 190 for search 'python ((code implementation) OR (time implementation))', query time: 0.35s Refine Results
  1. 161

    Accompanying data files (Melbourne, Washington DC, Singapore, and NYC-Manhattan) by Winston Yap (13771969)

    Published 2025
    “…</p><p dir="ltr">Each zipped folder consists the following files:</p><ul><li>Graph data - City object nodes (.parquet) and COO format edges (.txt)</li><li>predictions.txt (model predictions from GraphSAGE model)</li><li>final_energy.parquet (Compiled training and validation building energy data)</li></ul><p dir="ltr">The provided files are supplementary to the code repository which provides Python notebooks stepping through the data preprocessing, GNN training, and satellite imagery download processes. …”
  2. 162

    Computational performance analysis script. by Le Qi (8859521)

    Published 2025
    “…<p>Python implementation for computational performance evaluation and timing analysis.…”
  3. 163

    Single Cell DNA methylation data for Human Brain altas (MajorType+Region CG allc files) by Wubin Ding (11823941)

    Published 2025
    “…</p><p dir="ltr">PMID: 37824674</p><p><br></p><h2>How to download</h2><p dir="ltr">To quickly download the whole folder, Python package <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">pyfigshare</a> can be implemented. please refer to pyfigshare documentation: <a href="https://github.com/DingWB/pyfigshare" rel="noreferrer" target="_blank">https://github.com/DingWB/pyfigshare</a></p><p dir="ltr">for example: <code>figshare download 28424780 -o downlnoaded_data</code></p>…”
  4. 164

    IGD-cyberbullying-detection-AI by Bryan James (19921044)

    Published 2024
    “…</p><h2>Requirements</h2><p dir="ltr">To run this code, you'll need the following dependencies:</p><ul><li>Python 3.x</li><li>TensorFlow</li><li>scikit-learn</li><li>pandas</li><li>numpy</li><li>matplotlib</li><li>imbalanced-learn</li></ul><p dir="ltr">You can install the required dependencies using the provided <code>requirements.txt</code> file.…”
  5. 165

    Fast, FAIR, and Scalable: Managing Big Data in HPC with Zarr by Alfonso Ladino (21447002)

    Published 2025
    “…Our implementation shows processing time reductions of up to 210× compared to traditional workflows, even on standard hardware. …”
  6. 166

    Overview of generalized weighted averages. by Nobuhito Manome (8882084)

    Published 2025
    “…GWA-UCB1 outperformed G-UCB1, UCB1-Tuned, and Thompson sampling in most problem settings and can be useful in many situations. The code is available at <a href="https://github.com/manome/python-mab" target="_blank">https://github.com/manome/python-mab</a>.…”
  7. 167

    Automatic data reduction for the typical astronomer by Bradford Holden (21789524)

    Published 2025
    “…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …”
  8. 168

    Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789 by Jordan Waters (21620558)

    Published 2025
    “…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …”
  9. 169

    Concurrent spin squeezing and field tracking with machine learning by Junlei Duan (18393642)

    Published 2025
    “…Randomly signal generating codeb.Deep learning codec.data pre-processing code The network is implemented using the torch 1.13.1 framework and CUDA 11.6 on Python 3.8.8. …”
  10. 170

    Gene Editing using Transformer Architecture by Rishabh Garg (5261744)

    Published 2025
    “…., the H-Bot sequence), it facilitates on-screen gene editing, enabling targeted mutations or the insertion of desired genes. Implementation requires Python and deep learning frameworks like TensorFlow or PyTorch, with optional use of Biopython for genetic sequence handling. …”
  11. 171

    Supervised Classification of Burned Areas Using Spectral Reflectance and Machine Learning by Baptista Boanha (22424668)

    Published 2025
    “…Six Python scripts are provided, each implementing a distinct machine learning algorithm—Random Forest, k-Nearest Neighbors (k-NN), Multi-Layer Perceptron (MLP), Decision Tree, Naïve Bayes, and Logistic Regression. …”
  12. 172

    Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i> by Hao Chen (20313552)

    Published 2025
    “…</p><p dir="ltr">The dataset includes:</p><ol><li>Raw locomotor activity measurements (.txt files) with 1-minute resolution</li><li>Breeding experiment data (Pair_breeding.csv) documenting nest IDs, population sources, photoperiod treatments, and breeding success</li><li>Activity measurement metadata (Loc_metadataset.csv) containing detailed experimental parameters and daily activity metrics extracted using tsfresh</li></ol><p dir="ltr">The repository also includes complete analysis pipelines implemented in both Python (3.8.8) and R (4.3.1), featuring:</p><ul><li>Data preprocessing and machine learning model development</li><li>Statistical analyses</li><li>Visualization scripts for generating Shapley plots, activity pattern plots, and other figures</li></ul><p></p>…”
  13. 173

    Dataset for: Phylotranscriptomics reveals the phylogeny of Asparagales and the evolution of allium flavor biosynthesis, Nature Communications,DOI:10.1038/s41467-024-53943-6 by Xiao-Xiao Wang (2447920)

    Published 2024
    “…Specifically, run this *.xml file using BEAST six times. Then, output of the six runs was combined and TreeAnnotator was used to summarize divergence time.…”
  14. 174

    CNG-ARCO-RADAR.pdf by Alfonso Ladino (21447002)

    Published 2025
    “…This approach uses a suite of Python libraries, including Xarray (Xarray-Datatree), Xradar, and Zarr, to implement a hierarchical tree-like data model. …”
  15. 175

    Folder with all data and algorithms by Jorge Servert Lerdo de Tejada (22290001)

    Published 2025
    “…In this study, we present an open-source, Python-based computational framework that unifies photon transport modeling, probe geometry optimization, and photothermal safety assessment into a single workflow. …”
  16. 176

    Hippocampal and cortical activity reflect early hyperexcitability in an Alzheimer's mouse model by Marina Diachenko (19739092)

    Published 2025
    “…</p><p dir="ltr">All data are available upon request. The standalone Python implementation of the fE/I algorithm is available under a CC-BY-NC-SA license at <a href="https://github.com/arthur-ervin/crosci" target="_blank">https://github.com/arthur-ervin/crosci</a>. …”
  17. 177

    Reinforcement Learning based traffic steering inOpen Radio Access Network (ORAN)- oran-ts GitHub Repository by Aaradhy Sharma (21503465)

    Published 2025
    “…It features a modular Python framework implementing various RL agents (Q-Learning, SARSA, N-Step SARSA, DQN) and a traditional baseline evaluated in a realistic cellular network environment. …”
  18. 178

    3D PD-Controlled Nanorobot Swarm Simulation for Targeted Cancer and BBB Therapy by Umar Tabbsum (22058780)

    Published 2025
    “…</p><p dir="ltr">Implemented in Python (NumPy, Matplotlib, 3D visualization), the framework is fully annotated and reproducible. …”
  19. 179

    Elements: Streaming Molecular Dynamics Simulation Trajectories for Direct Analysis – Applications to Sub-Picosecond Dynamics in Microsecond Simulations by Matthias Heyden (17087794)

    Published 2025
    “…This eliminates the need for intermediate storage and allows immediate access to high-frequency fluctuations and vibrational signatures that would otherwise be inaccessible. We have implemented this streaming interface in the MD engines NAMD, LAMMPS, and GROMACS</p><p dir="ltr">On the client side, we developed the IMDClient Python package which receives the streamed data, stores into a custom buffer, and provides it to external tools as NumPy arrays, facilitating integration with scientific computing workflows. …”
  20. 180

    MSc Personalised Medicine at Ulster University by Steven Watterson (100045)

    Published 2025
    “…</b> Introducing computational approaches to studying genes, proteins or metabolites, this module teaches Python coding, data analysis and how to work with the databases that support data analysis.…”