يعرض 281 - 286 نتائج من 286 نتيجة بحث عن 'python ((code implementing) OR (model implementing))', وقت الاستعلام: 0.18s تنقيح النتائج
  1. 281

    OHID-FF dataset for forest fire detection and classification حسب xin chen (20496938)

    منشور في 2025
    "…</p><p dir="ltr">- Pointed to the `train val scripts/` README for model-specific commands and dependencies.</p>…"
  2. 282

    Microscopic Detection and Quantification of Microplastic Particles in Environmental Water Samples حسب Derek Lam (11944213)

    منشور في 2025
    "…Image processing algorithms, implemented in Python using adaptive thresholding techniques, were applied to segment particles from the background. …"
  3. 283

    Comprehensive Fluid and Gravitational Dynamics Script for General Symbolic Navier-Stokes Calculations and Validation حسب Stylianos Touloumidis (19938747)

    منشور في 2024
    "…It provides a flexible foundation on which theoretical assumptions can be validated, and practical calculations performed. Implemented in Python with symbolic calculations, the script facilitates in-depth analysis of complex flow patterns and makes advanced mathematical computations more accessible. …"
  4. 284

    Mean Annual Habitat Quality and Its Driving Variables in China (1990–2018) حسب ChenXi Zhu (21374876)

    منشور في 2025
    "…</p><p dir="ltr">(HQ: Habitat Quality; CZ: Climate Zone; FFI: Forest Fragmentation Index; GPP: Gross Primary Productivity; Light: Nighttime Lights; PRE: Mean Annual Precipitation Sum; ASP: Aspect; RAD: Solar Radiation; SLOPE: Slope; TEMP: Mean Annual Temperature; SM: Soil Moisture)</p><p dir="ltr"><br>A Python script used for modeling habitat quality, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), and implementation of four machine learning models to predict habitat quality.…"
  5. 285

    Core data حسب Baoqiang Chen (21099509)

    منشور في 2025
    "…We divided the dataset into training and test sets, using 70% of the genes for training and 30% for testing. We implemented machine learning algorithms using the following R packages: rpart for Decision Trees, gbm for Gradient Boosting Machines (GBM), ranger for Random Forests, the glm function for Generalized Linear Models (GLM), and xgboost for Extreme Gradient Boosting (XGB). …"
  6. 286

    Landscape Change Monitoring System (LCMS) Conterminous United States Cause of Change (Image Service) حسب U.S. Forest Service (17476914)

    منشور في 2025
    "…Scikit-learn: Machine Learning in Python. In Journal of Machine Learning Research (Vol. 12, pp. 2825-2830).Pengra, B. …"