Showing 1 - 20 results of 179 for search 'python ((code represent) OR (models represent))', query time: 0.21s Refine Results
  1. 1

    Resolving Harvesting Errors in Institutional Repository Migration : Using Python Scripts with VS Code and LLM Integration. by satoshi hashimoto(橋本 郷史) (18851272)

    Published 2025
    “…Therefore, we decided to create a dedicated Python program using Large Language Model (LLM)-assisted coding.…”
  2. 2

    City-level GDP estimates for China under alternative pathways from 2020 to 2100-python code by Jinjie Sun (11791715)

    Published 2025
    “…The dataset is complemented by processing code and raw input data in the "Python_Code" directory to ensure full reproducibility. …”
  3. 3

    Multi-Version PYZ Builder Script: A Universal Python Module Creation Tool by Pavel Izosimov (20096259)

    Published 2024
    “…This tool represents a significant advancement in the realm of <a href="https://xn--mxac.net/secure-python-code-manager.html" target="_blank"><b>secure code sharing</b></a>, providing a robust solution for modern Python programming challenges.…”
  4. 4
  5. 5

    System Hardware ID Generator Script: A Cross-Platform Hardware Identification Tool by Pavel Izosimov (20096259)

    Published 2024
    “…This tool provides <a href="https://xn--mxac.net/local-python-code-protector.html" target="_blank">code obfuscation in Python</a> and <a href="https://xn--mxac.net/secure-python-code-manager.html" target="_blank">Python code encryption</a>, enabling developers to <a href="https://xn--mxac.net/local-python-code-protector.html" target="_blank">protect Python code</a> effectively.…”
  6. 6

    Code program. by Honglei Pang (22693724)

    Published 2025
    “…<div><p>Vehicle lateral stability control under hazardous operating conditions represents a pivotal challenge in intelligent driving active safety. …”
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15

    Code interpreter with LLM. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  16. 16
  17. 17
  18. 18

    Python code for hierarchical cluster analysis of detected R-strategies from rule-based NLP on 500 circular economy definitions by Zahir Barahmand (18008947)

    Published 2025
    “…</p><p dir="ltr">This Python code was optimized and debugged using ChatGPT-4o to ensure implementation efficiency, accuracy, and clarity.…”
  19. 19

    Datasets To EVAL. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”
  20. 20

    Statistical significance test results. by Jin Lu (428513)

    Published 2025
    “…We evaluated our proposed system on five educational datasets—AI2_ARC, OpenBookQA, E-EVAL, TQA, and ScienceQA—which represent diverse question types and domains. Compared to vanilla Large Language Models (LLMs), our approach combining Retrieval-Augmented Generation (RAG) with Code Interpreters achieved an average accuracy improvement of 10−15 percentage points. …”