Search alternatives:
code predicted » model predicted (Expand Search), models predicted (Expand Search), low predicted (Expand Search)
code predicted » model predicted (Expand Search), models predicted (Expand Search), low predicted (Expand Search)
-
41
Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i>
Published 2025“…The repository contains all necessary data and code for reproducing the analyses of beetle breeding phenology predictions using circadian activity patterns.…”
-
42
-
43
Western Oregon Wet Dry (WOWTDR) annual predictions of late summer streamflow status for western Oregon, 2019-2021
Published 2025“…Also included is all R code and Python code needed to run and process this model.…”
-
44
Submit to AGU-Manuscript-Enhancing Landslide Displacement Prediction Using a Spatio-Temporal Deep Learning Model with Interpretable Features
Published 2025“…It includes the monitoring data and model prediction results in two Excel files, along with the corresponding Python code used in the study. …”
-
45
Liang et al., 2024_CEE_BrGMM_BAE: A Clustering Model for Predicting Freshwater and Halo-Alkaliphilic Bacterial Assemblages Using brGDGTs
Published 2024“…</p><p dir="ltr"><b>Features</b>:</p><ul><li><b>User-Friendly GUI</b>: For users unfamiliar with Python, we've developed a graphical user interface (GUI) that enables predictions without the need to install or run Python code.…”
-
46
ML model for prediction of postpartum rehospitalization in pregnant women/new mothers using readily obtainable pre-pregnancy or early pregnancy sociodemographic and health determin...
Published 2025“…</li><li>We also share the R/SAS/Python codes for causal inference analyses on this and similar datasets.…”
-
47
-
48
MLP_mod_application_v2.zip
Published 2025“…<p dir="ltr">The python source code for predicting the spatial location of macrophages using single cell dataset. …”
-
49
Oka et al., Supplementary Data for "Development of a battery emulator using deep learning model to predict the charge–discharge voltage profile of lithium-ion batteries"
Published 2024“…For a single file, test data is read, and the prediction plot is output. To use this Python script, you need to modify the "CFG (config)" and "Convenient" sections within the script.…”
-
50
Supplementary file 1_ParaDeep: sequence-based deep learning for residue-level paratope prediction using chain-aware BiLSTM-CNN models.docx
Published 2025“…The implementation is freely available at https://github.com/PiyachatU/ParaDeep, with Python (PyTorch) code and a Google Colab interface for ease of use.…”
-
51
-
52
-
53
-
54
-
55
-
56
Methodological Approach Based on Structural Parameters, Vibrational Frequencies, and MMFF94 Bond Charge Increments for Platinum-Based Compounds
Published 2025“…The developed bci optimization tool, based on MMFF94, was implemented using a Python code made available at https://github.com/molmodcs/bci_solver. …”
-
57
Void-Center Galaxies and the Gravity of Probability Framework: Pre-DESI Consistency with VGS 12 and NGC 6789
Published 2025“…<br><br><br><b>ORCID ID: https://orcid.org/0009-0009-0793-8089</b><br></p><p dir="ltr"><b>Code Availability:</b></p><p dir="ltr"><b>All Python tools used for GoP simulations and predictions are available at:</b></p><p dir="ltr"><b>https://github.com/Jwaters290/GoP-Probabilistic-Curvature</b><br><br>The Gravity of Probability framework is implemented in this public Python codebase that reproduces all published GoP predictions from preexisting DESI data, using a single fixed set of global parameters. …”
-
58
The data of the paper "Remote spectral detection of canopy functional strategies varying within and across forest types".
Published 2025“…Canopy_2024_PLSR_ST_canopy_run_refit.py</p><p dir="ltr">This is the python code used for PLSR modeling.</p><p dir="ltr"><br></p><p dir="ltr">3. python_code_get_model_details.zip</p><p dir="ltr">This is the python code to get model performance, coefficients, VIPs, and so on.…”
-
59
Albumin Degradome Foundation Atlas
Published 2025“…</p><h2><b>Data Format and Access</b></h2><ul><li><b>Primary file:</b> <code>Albumin_Degradome_Foundation_Atlas_v1.tar.xz</code><br>(contains all peptide tables in standard CSV format)</li><li><b>File Type:</b> ASCII comma-separated values (CSV)</li><li><b>Compression:</b> <code>xz -9 -T0</code> for maximal CPU-parallelised compression</li><li><b>Compatibility:</b></li><li><ul><li>R, Python, MATLAB, SAS</li><li>Excel, LibreOffice</li><li>Any proteomics workflow (e.g., Skyline, MaxQuant preprocessing, MS/MS spectral libraries)</li></ul></li></ul><h2><b>FAIR Principles</b></h2><p dir="ltr">This dataset is fully aligned with FAIR data standards:</p><ul><li><b>Findable:</b> Rich metadata, stable DOI, search-optimised description</li><li><b>Accessible:</b> Open-access Figshare repository</li><li><b>Interoperable:</b> Standard numeric and CSV formats</li><li><b>Reusable:</b> Transparent, reproducible Python source code included</li></ul><h2><b>Applications</b></h2><p dir="ltr">The Albumin Degradome Foundation Atlas supports research across multiple biomedical domains:</p><ul><li>Biomarker development in liver disease, kidney dysfunction, inflammation, and systemic disorders</li><li>Mass-spectrometry method development</li><li>Computational proteomics and peptide modelling</li><li>Autoimmunity and neo-epitope analysis</li><li>Protein–peptide interaction studies</li><li>Proteolytic pathway mapping and degradomics</li></ul><h2><b>Versioning and Future Work</b></h2><p dir="ltr">This is <b>Version 1</b> of the Albumin Degradome Foundation Atlas. …”
-
60
<b>Tau Degradome Foundation Atlas</b>
Published 2025“…</li><li><b>Thermodynamic stability</b> is predicted for each peptide, with stable candidates labelled (<code>stable=1</code>), highlighting their suitability for biomarker assay development.…”