Search alternatives:
effective implementation » effective prevention (Expand Search)
python effective » proven effective (Expand Search), 1_the effective (Expand Search), 2_the effective (Expand Search)
effective implementation » effective prevention (Expand Search)
python effective » proven effective (Expand Search), 1_the effective (Expand Search), 2_the effective (Expand Search)
-
21
Summary of Tourism Dataset.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
22
Segment-wise Spending Analysis.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
23
Hyperparameter Parameter Setting.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
24
Marketing Campaign Analysis.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
25
Visitor Segmentation Validation Accuracy.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
26
Integration of VAE and RNN Architecture.
Published 2025“…The model employs robust forecasting of economic impacts, visitor spending patterns, and behavior while accounting for uncertainty through variational inference. The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”
-
27
-
28
Cathode carbon block material parameters [14].
Published 2025“…A random aggregate model was implemented in Python and imported into finite element software to simulate sodium diffusion using Fick’s second law. …”
-
29
Sodium concentration distribution cloud map.
Published 2025“…A random aggregate model was implemented in Python and imported into finite element software to simulate sodium diffusion using Fick’s second law. …”
-
30
Sodium binding coefficient R.
Published 2025“…A random aggregate model was implemented in Python and imported into finite element software to simulate sodium diffusion using Fick’s second law. …”
-
31
Error reduction over time by the HOFA-SMC.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. The controllers are evaluated across three test scenarios: flexion, extension, and ball grasping. …”
-
32
Comparison of SMC techniques.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. The controllers are evaluated across three test scenarios: flexion, extension, and ball grasping. …”
-
33
Proposed HOFA-SMC with experimental validation.
Published 2025“…A detailed simulation study is conducted on a full hand model, comprising four 4-degree-of-freedom (DOF) fingers and a 3-DOF thumb, implemented in Python. The controllers are evaluated across three test scenarios: flexion, extension, and ball grasping. …”
-
34
-
35
-
36
Missing Value Imputation in Relational Data Using Variational Inference
Published 2025“…Additional results, implementation details, a Python implementation, and the code reproducing the results are available online. …”
-
37
<b>Anthropogenic nutrient inputs cause excessive algal growth for nearly half the world’s population</b>
Published 2025“…</p><p dir="ltr">Models: R code to explore different models for implementation via Python in ArcGIS</p><p dir="ltr">!geotiffs: GeoTIFF raster files at level 6 of HydroBasins for current, zero human effect and the difference between current and zer human effect.…”
-
38
Overview of generalized weighted averages.
Published 2025“…In this study, we propose a new generalized upper confidence bound (UCB) algorithm (GWA-UCB1) by extending UCB1, which is a representative algorithm for MAB problems, using generalized weighted averages, and present an effective algorithm for various problem settings. GWA-UCB1 is a two-parameter generalization of the balance between exploration and exploitation in UCB1 and can be implemented with a simple modification of the UCB1 formula. …”
-
39
Core-Based Smart Sampling Framework: A Theoretical and Experimental Study on Randomized Partitioning for SAT Problems
Published 2025“…We provide theoretical guarantees on complexity reduction and probabilistic completeness, apply the method to SAT instances, and evaluate its performance using experimental Python implementations. The results show that smart sampling drastically reduces the effective complexity of SAT problems and offers new insights into the structure of NP-complete problems.…”
-
40
Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx
Published 2025“…Statistical analyses were conducted using Python and R, with significance set at p < 0.05.</p>Results<p>In this study, we developed an integrated predictive model for HER2 status in breast cancer by combining deep learning-based MRI features and clinical data. …”