Showing 181 - 200 results of 229 for search 'python model implementing', query time: 0.12s Refine Results
  1. 181

    A Hybrid Ensemble-Based Parallel Learning Framework for Multi-Omics Data Integration and Cancer Subtype Classification by Mohammed Nasser Al-Andoli (21431681)

    Published 2025
    “…<p dir="ltr">The code supports replication of results on TCGA Pan-cancer and BRCA datasets and includes data preprocessing, model training, and evaluation scripts:<br>Python scripts for data preprocessing and integration</p><ul><li>Autoencoder implementation for multimodal feature learning</li><li>Hybrid ensemble training code (DL/ML models and meta-learner)</li><li>PSO and backpropagation hybrid optimization code</li><li>Parallel execution scripts</li><li>Instructions for replicating results on TCGA Pan-cancer and BRCA datasets</li></ul><p></p>…”
  2. 182

    RealBench: A Repo-Level Code Generation Benchmark Aligned with Real-World Software Development Practices by RealBench RealBench (22275393)

    Published 2025
    “…<br>│ │ └── uml_dag.py # UML dependency graph analysis.<br>│ ├── model_gen/ # Code generation using various LLMs.<br>│ │ ├── generate/ # LLM inference implementations.…”
  3. 183

    Automatic data reduction for the typical astronomer by Bradford Holden (21789524)

    Published 2025
    “…PypeIt has been developed by a small team of astronomers with two leading philosophies: (1) build instrument-agnostic code to serve nearly any spectrograph; (2) implement algorithms that achieve Poisson-level sky-subtraction with minimal systematics to yield precisely calibrated spectra with a meaningful noise model. …”
  4. 184

    World Heritage documents reveal persistent gaps between climate awareness and local action by Yang Chen (20756166)

    Published 2025
    “…The analysis section includes a GLM model implemented in R, along with evaluation tools such as correlation heatmaps, ICC agreement analysis, and MCC-based binary classification assessment. …”
  5. 185

    Bayesian Changepoint Detection via Logistic Regression and the Topological Analysis of Image Series by Andrew M. Thomas (712104)

    Published 2025
    “…The method also successfully recovers the location and nature of changes in more traditional changepoint tasks. An implementation of our method is available in the Python package bclr.…”
  6. 186

    Evaluation and Statistical Analysis Code for "Multi-Task Learning for Joint Fisheye Compression and Perception for Autonomous Driving" by Basem Ahmed (18127861)

    Published 2025
    “…</li></ul><p dir="ltr">These scripts are implemented in Python using the PyTorch framework and are provided to ensure the reproducibility of the experimental results presented in the manuscript.…”
  7. 187

    A Fully Configurable Open-Source Software-Defined Digital Quantized Spiking Neural Core Architecture by Nagarajan Kandasamy (8400168)

    Published 2025
    “…QUANTISENC’s software-defined hardware design methodology allows the user to train an SNN model using Python and evaluate performance of its hardware implementation, such as area, power, latency, and throughput. …”
  8. 188

    Copy number contingency table. by Yang Wu (66682)

    Published 2025
    “…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
  9. 189

    Gene mutation contingency table. by Yang Wu (66682)

    Published 2025
    “…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
  10. 190

    Resistant & sensitive cell line Info on AZD5991. by Yang Wu (66682)

    Published 2025
    “…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
  11. 191

    Resistant & sensitive drug info on COLO800. by Yang Wu (66682)

    Published 2025
    “…Our methods are implemented in Python and are freely available from GitHub (<a href="https://github.com/queryang/PASO" target="_blank">https://github.com/queryang/PASO</a>).…”
  12. 192

    PTPC v1.0 Numerical Baseline: Stable Multi-Bounce Cosmology Simulation by David Lewis Stewart Parry (22188211)

    Published 2025
    “…PTPC v1.0 Numerical Baseline: Stable Multi-Bounce Cosmology Simulation This release provides the complete, reproducible numerical implementation of the Parry Tensional Phase Collapse (PTPC) model — the dynamic core of the Universal Heartbeat Theory (UHT/PTPC). …”
  13. 193

    Data from: Circadian activity predicts breeding phenology in the Asian burying beetle <i>Nicrophorus nepalensis</i> by Hao Chen (20313552)

    Published 2025
    “…</p><p dir="ltr">The dataset includes:</p><ol><li>Raw locomotor activity measurements (.txt files) with 1-minute resolution</li><li>Breeding experiment data (Pair_breeding.csv) documenting nest IDs, population sources, photoperiod treatments, and breeding success</li><li>Activity measurement metadata (Loc_metadataset.csv) containing detailed experimental parameters and daily activity metrics extracted using tsfresh</li></ol><p dir="ltr">The repository also includes complete analysis pipelines implemented in both Python (3.8.8) and R (4.3.1), featuring:</p><ul><li>Data preprocessing and machine learning model development</li><li>Statistical analyses</li><li>Visualization scripts for generating Shapley plots, activity pattern plots, and other figures</li></ul><p></p>…”
  14. 194

    Table 3_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
  15. 195

    Table 2_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
  16. 196

    Table 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
  17. 197

    Data Sheet 1_Novel deep learning-based prediction of HER2 expression in breast cancer using multimodal MRI, nomogram, and decision curve analysis.docx by Shi Qiu (425335)

    Published 2025
    “…Nomogram construction, ROC analysis, and DCA evaluation were performed to assess model performance. Statistical analyses were conducted using Python and R, with significance set at p < 0.05.…”
  18. 198

    Fast, FAIR, and Scalable: Managing Big Data in HPC with Zarr by Alfonso Ladino (21447002)

    Published 2025
    “…</p><p dir="ltr">In this work, we apply the scientific datacube model to the transformation of large-scale radar datasets from Colombia and the U.S. …”
  19. 199

    Leveraging explainable causal artificial intelligence to study forest gross primary productivity dynamics in China's protected areas by Pedro Cabral (18947566)

    Published 2025
    “…<p dir="ltr">A Python script used for modeling forest GPP in China´s Protected Areas, including mean encoding of the categorical variable climate zone (CZ), multicollinearity testing using Variance Inflation Factor (VIF), implementation of four machine learning models to predict forest GPP, XAI and causality analysis.…”
  20. 200

    Summary of Tourism Dataset. by Jing Zhang (23775)

    Published 2025
    “…The implementation uses Python language on a tourism dataset comprising necessary attributes like visitor numbers, days, spending patterns, employment, international tourism samples over a specific region, and a diverse age group analyzed over a year. …”